Ardhian Jaya Wibawa
成为会员时间:2024
钻石联赛
37000 积分
成为会员时间:2024
This introductory-level quest shows application developers how the Google Cloud ecosystem could help them build secure, scalable, and intelligent cloud native applications. You learn how to develop and scale applications without setting up infrastructure, run data analytics, gain insights from data, and develop with pre-trained ML APIs to leverage machine learning even if you are not a Machine Learning expert. You will also experience seamless integration between various Google services and APIs to create intelligent apps.
本課程將示範如何在 BigQuery 運用 AI/機器學行模型,以執行生成式 AI 任務。透過涉及顧客關係管理的應用實例,您將瞭解運用 Gemini 模型解決業務問題的工作流程。為了便於理解,本課程還提供了採用 SQL 查詢和 Python 筆記本的程式設計解決方案,指導您逐步操作。
This course demonstrates the power of integrating Google Cloud services and tools with Workspace applications - like using Node.js to build a survey bot, the Natural Language API to recognize sentiment in a Google Doc, and building a chat bot with Apps Script.
The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This final course in the series reviews managed big data services, machine learning and its value, and how to demonstrate your skill set in Google Cloud further by earning Skill Badges.
In this course, you will learn about the various services Google Cloud offers for modernizing retail applications and infrastructure. Through a series of lecture content and hands-on labs, you will gain practical experience deploying cutting-edge retail and ecommerce solutions on Google Cloud.
本課程會說明 Gemini in BigQuery,這是一套由 AI 輔助的功能,可協助「從資料到 AI」的工作流程。這些功能包含資料探索和準備、程式碼生成和疑難排解,以及工作流程探索和視覺化。本課程將透過概念解說、應用實例和實作實驗室,協助資料從業人員提升工作效率,並加速開發 pipeline。
本課程涵蓋「AI 隱私權」和「AI 安全性」這兩個重要主題。我們將介紹實用的方法和工具,協助您運用 Google Cloud 產品和開放原始碼工具,導入 AI 隱私權和安全性的建議做法。
TensorFlow is an open source software library for high performance numerical computation that's great for writing models that can train and run on platforms ranging from your laptop to a fleet of servers in the Cloud to an edge device. This quest takes you beyond the basics of using predefined models and teaches you how to build, train and deploy your own on Google Cloud.
Complete the intermediate Secure Software Delivery skill badge to demonstrate your proficiency in proactively integrating security into the software development lifecycle (SDLC) with DevSecOps principles. You'll learn how to utilize Google Kubernetes Engine (GKE) and Cloud Run for secure container image deployment, implement automated vulnerability scanning to proactively identify risks, and streamline application development with Artifact Registry while maintaining a focus on security. Additionally, you'll gain skills in integrating Cloud Build for robust development processes and implementing Admission Control Policies for fine-grained control over your environment.
Earn the introductory skill badge by completing the Automate Data Capture at Scale with Document AI course. In this course, you learn how to extract, process, and capture data using Document AI.
完成「Cloud Speech API:3 種應用」課程,瞭解如何使用語音相關 API 工具合成及轉錄語音, 即可獲得入門級技能徽章。
Complete the introductory Get Started with Sensitive Data Protection skill badge course to demonstrate skills in the following: using Sensitive Data Protection services (including the Cloud Data Loss Prevention API) to inspect, redact, and de-identify sensitive data in Google Cloud.
Complete the introductory Secure BigLake Data skill badge course to demonstrate skills with IAM, BigQuery, BigLake, and Data Catalog within Dataplex to create and secure BigLake tables.
完成「Google Cloud Compute 基本操作」任務, 學習如何在 Compute Engine 中使用虛擬機器 (VM)、永久磁碟 和網路伺服器,即可獲得技能徽章。 「技能徽章」是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品與服務方面的精熟技能, 並代表您已通過測驗, 能在互動式實作環境中應用相關知識。完成這個技能徽章課程和結業評量挑戰實驗室之後, 即可取得數位徽章並與他人分享。
完成「Gemini 和 Imagen 實務應用:建構 AI 應用程式」技能徽章入門課程,即可證明您具備下列技能:圖片辨識、自然語言處理、 使用 Google 強大的 Gemini 和 Imagen 模型生成圖片,以及在 Vertex AI 平台上部署應用程式。
完成 在 Vertex AI 設計提示 技能徽章入門課程,即可證明您具備下列技能: 在 Vertex AI 設計提示、分析圖片,以及運用多模態模型生成內容。瞭解如何建立有效的提示、引導生成式 AI 輸出內容, 以及將 Gemini 模型用於實際的行銷情境。
本課程介紹的 Gemini 是採用生成式 AI 技術的協作工具,可協助開發人員透過 Google Cloud 建構應用程式。您將瞭解如何透過提示讓 Gemini 為您解釋程式碼內容、推薦 Google Cloud 服務,以及生成應用程式的程式碼。在實作研究室中,您也會體驗到 Gemini 如何改良應用程式的開發工作流程。 Duet AI 已更名為 Gemini,這是我們的新一代模型。
本課程介紹的 Gemini 是採用生成式 AI 技術的協作工具,可協助分析客戶資料及預測產品銷售情形。您也會學習如何在 BigQuery 中使用客戶資料識別、分類及開發新客戶。透過使用實作研究室,您可以體驗 Gemini 如何改良資料分析和機器學習工作流程。 Duet AI 已更名為 Gemini,這是我們的新一代模型。
This course covers how to implement the various flavors of production ML systems— static, dynamic, and continuous training; static and dynamic inference; and batch and online processing. You delve into TensorFlow abstraction levels, the various options for doing distributed training, and how to write distributed training models with custom estimators. This is the second course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Image Understanding with TensorFlow on Google Cloud course.
Business professionals in non-technical roles have a unique opportunity to lead or influence machine learning projects. If you have questions about machine learning and want to understand how to use it, without the technical jargon, this course is for you. Learn how to translate business problems into machine learning use cases and vet them for feasibility and impact. Find out how you can discover unexpected use cases, recognize the phases of an ML project and considerations within each, and gain confidence to propose a custom ML use case to your team or leadership or translate the requirements to a technical team.
Earn the intermediate Skill Badge by completing the Classify Images with TensorFlow on Google Cloud skill badge course where you learn how to use TensorFlow and Vertex AI to create and train machine learning models. You primarily interact with Vertex AI Workbench user-managed notebooks.
完成「運用 BigQuery ML 建立機器學習模型」技能徽章中階課程,即可證明您具備下列技能: 可使用 BigQuery ML 建立及評估機器學習模型,並根據資料進行預測。 「技能徽章」是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品和服務方面的精熟技能, 代表您已通過測驗,能在互動式實作環境中應用相關知識。完成 本課程及結業評量挑戰實驗室,即可取得技能徽章 並與他人分享。
Earn a skill badge by completing the Detect Manufacturing Defects using Visual Inspection AI course, where you learn how to use Visual Inspection AI to deploy a solution artifact and test that it can successfully identify defects in a manufacturing process.
Complete the introductory Build LookML Objects in Looker skill badge course to demonstrate skills in the following: building new dimensions and measures, views, and derived tables; setting measure filters and types based on requirements; updating dimensions and measures; building and refining Explores; joining views to existing Explores; and deciding which LookML objects to create based on business requirements.
Earn a skill badge by completing the Analyze Sentiment with Natural Language API quest, where you learn how the API derives sentiment from text.
Complete the intermediate Perform Predictive Data Analysis in BigQuery skill badge course to demonstrate skills in the following: creating datasets in BigQuery by importing CSV and JSON files; harnessing the power of BigQuery with sophisticated SQL analytical concepts, including using BigQuery ML to train an expected goals model on soccer event data and evaluate the impressiveness of World Cup goals.
Earn a skill badge by completing the Analyze Images with the Cloud Vision API quest, where you discover how to leverage the Cloud Vision API for various tasks, including extracting text from images.
Earn a skill badge by completing the Analyze Speech and Language with Google APIs quest, where you learn how to use the Natural Language and Speech APIs in real-world settings.
Using large scale computing power to recognize patterns and "read" images is one of the foundational technologies in AI, from self-driving cars to facial recognition. The Google Cloud Platform provides world class speed and accuracy via systems that can utilized by simply calling APIs. With these and a host of other APIs, GCP has a tool for just about any machine learning job. In this introductory quest, you will get hands-on practice with machine learning as it applies to image processing by taking labs that will enable you to label images, detect faces and landmarks, as well as extract, analyze, and translate text from within images.
大家都知道,機器學習是發展最快的科技領域之一, 而 Google Cloud Platform 在這方面功不可沒。 GCP 提供多種 API,凡是與機器學習相關的任務,幾乎都能處理。您將在本入門課程的 實驗室,實際演練機器學習技術 在語言處理方面的應用,學會如何從文中擷取實體資訊、 執行情緒和語法分析,並使用 Speech-to-Text API 轉錄語音。
大數據、機器學習和人工智慧 (AI) 是時下熱門的 電腦相關話題,但這些領域相當專業,就算想要入門 也難以取得教材或資料。幸好,Google Cloud 提供了此領域的多種服務,而且容易使用。 參加這堂入門課程,您就能踏出第一步, 開始學習運用 BigQuery、Cloud Speech API 以及 Video Intelligence 等工具。
探索生成式 AI - Vertex AI 課程包含一系列實驗室,幫助您瞭解 如何在 Google Cloud 使用生成式 AI。透過實驗室,您將瞭解 如何使用 Vertex AI PaLM API 系列模型,包括 text-bison、chat-bison、 和 textembedding-gecko。您也會瞭解提示設計、最佳做法、 以及這些模型如何用於構思、文字分類、文字擷取、文字 摘要等。您也會瞭解如何透過 Vertex AI 自訂訓練功能調整基礎模型, 並將模型部署至 Vertex AI 端點。