Dołącz Zaloguj się

Wykorzystuj swoje umiejętności w konsoli Google Cloud

Anton Tereshko

Jest członkiem od 2024

Liga diamentowa

27505 pkt.
Build and Deploy Machine Learning Solutions on Vertex AI Earned wrz 26, 2024 EDT
Odpowiedzialna AI dla deweloperów: interpretowalność i przejrzystość Earned wrz 18, 2024 EDT
Odpowiedzialna AI dla deweloperów: obiektywność i uprzedzenia Earned wrz 17, 2024 EDT
Machine Learning Operations (MLOps) for Generative AI Earned wrz 16, 2024 EDT
Machine Learning Operations (MLOps) with Vertex AI: Model Evaluation Earned wrz 15, 2024 EDT
Machine Learning Operations (MLOps) with Vertex AI: Manage Features Earned wrz 13, 2024 EDT
Machine Learning Operations (MLOps): Getting Started Earned wrz 13, 2024 EDT
Natural Language Processing on Google Cloud Earned wrz 13, 2024 EDT
Computer Vision Fundamentals with Google Cloud Earned wrz 3, 2024 EDT
Production Machine Learning Systems Earned sie 27, 2024 EDT
Feature Engineering Earned lip 27, 2024 EDT
Build, Train and Deploy ML Models with Keras on Google Cloud Earned lip 10, 2024 EDT
Launching into Machine Learning Earned cze 28, 2024 EDT
Introduction to AI and Machine Learning on Google Cloud Earned kwi 12, 2024 EDT

Earn the intermediate skill badge by completing the Build and Deploy Machine Learning Solutions on Vertex AI skill badge course, where you learn how to use Google Cloud's Vertex AI platform, AutoML, and custom training services to train, evaluate, tune, explain, and deploy machine learning models.

Więcej informacji

Na tym szkoleniu przedstawiamy koncepcje interpretowalności i przejrzystości AI. Omawiamy na nim, jak ważna jest przejrzystość AI dla deweloperów i inżynierów. Pokazujemy praktyczne techniki i narzędzia, które pomagają osiągnąć interpretowalność oraz przejrzystość zarówno w danych, jak i modelach AI.

Więcej informacji

Na tym szkoleniu przedstawiamy koncepcje odpowiedzialnej AI i zasad dotyczących AI. Omawiamy praktyczne metody identyfikowania obiektywności i uprzedzeń, a także ograniczania występowania uprzedzeń podczas używania AI/ML. W trakcie szkolenia przedstawiamy też praktyczne techniki i narzędzia, które umożliwiają wdrożenie sprawdzonych metod w zakresie odpowiedzialnej AI przy użyciu usług Google Cloud oraz narzędzi open source.

Więcej informacji

This course is dedicated to equipping you with the knowledge and tools needed to uncover the unique challenges faced by MLOps teams when deploying and managing Generative AI models, and exploring how Vertex AI empowers AI teams to streamline MLOps processes and achieve success in Generative AI projects.

Więcej informacji

This course equips machine learning practitioners with the essential tools, techniques, and best practices for evaluating both generative and predictive AI models. Model evaluation is a critical discipline for ensuring that ML systems deliver reliable, accurate, and high-performing results in production. Participants will gain a deep understanding of various evaluation metrics, methodologies, and their appropriate application across different model types and tasks. The course will emphasize the unique challenges posed by generative AI models and provide strategies for tackling them effectively. By leveraging Google Cloud's Vertex AI platform, participants will learn how to implement robust evaluation processes for model selection, optimization, and continuous monitoring.

Więcej informacji

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Learners will get hands-on practice using Vertex AI Feature Store's streaming ingestion at the SDK layer.

Więcej informacji

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

Więcej informacji

This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.

Więcej informacji

This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.

Więcej informacji

This course covers how to implement the various flavors of production ML systems— static, dynamic, and continuous training; static and dynamic inference; and batch and online processing. You delve into TensorFlow abstraction levels, the various options for doing distributed training, and how to write distributed training models with custom estimators. This is the second course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Image Understanding with TensorFlow on Google Cloud course.

Więcej informacji

This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.

Więcej informacji

This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.

Więcej informacji

The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.

Więcej informacji

This course introduces the AI and machine learning (ML) offerings on Google Cloud that build both predictive and generative AI projects. It explores the technologies, products, and tools available throughout the data-to-AI life cycle, encompassing AI foundations, development, and solutions. It aims to help data scientists, AI developers, and ML engineers enhance their skills and knowledge through engaging learning experiences and practical hands-on exercises.

Więcej informacji