Partecipa Accedi

Applica le tue competenze nella console Google Cloud

Anton Tereshko

Membro dal giorno 2024

Campionato Diamante

27505 punti
Build and Deploy Machine Learning Solutions on Vertex AI Earned set 26, 2024 EDT
AI responsabile per sviluppatori: interpretabilità e trasparenza Earned set 18, 2024 EDT
AI responsabile per sviluppatori: equità e bias Earned set 17, 2024 EDT
Machine Learning Operations (MLOps) for Generative AI Earned set 16, 2024 EDT
Machine Learning Operations (MLOps) with Vertex AI: Model Evaluation Earned set 15, 2024 EDT
Machine Learning Operations (MLOps) with Vertex AI: Manage Features Earned set 13, 2024 EDT
Machine Learning Operations (MLOps): Getting Started Earned set 13, 2024 EDT
Natural Language Processing on Google Cloud Earned set 13, 2024 EDT
Computer Vision Fundamentals with Google Cloud Earned set 3, 2024 EDT
Production Machine Learning Systems Earned ago 27, 2024 EDT
Feature engineering Earned lug 27, 2024 EDT
Crea, addestra ed esegui il deployment di modelli ML tramite Keras su Google Cloud Earned lug 10, 2024 EDT
Launching into Machine Learning - Italiano Earned giu 28, 2024 EDT
Introduzione all'AI e al machine learning su Google Cloud Earned apr 12, 2024 EDT

Earn the intermediate skill badge by completing the Build and Deploy Machine Learning Solutions on Vertex AI skill badge course, where you learn how to use Google Cloud's Vertex AI platform, AutoML, and custom training services to train, evaluate, tune, explain, and deploy machine learning models.

Scopri di più

Questo corso introduce i concetti di interpretabilità e la trasparenza dell'AI. Parla dell'importanza della trasparenza dell'AI per sviluppatori ed engineer. Illustra metodi e strumenti pratici per aiutare a raggiungere interpretabilità e trasparenza sia nei dati che nei modelli di AI.

Scopri di più

Questo corso introduce i concetti di AI responsabile e i principi dell'AI. Tratta le tecniche per identificare sostanzialmente l'equità e i bias e mitigare i bias nelle pratiche di AI/ML. Illustra metodi e strumenti pratici per implementare le best practice dell'AI responsabile utilizzando gli strumenti open source e i prodotti Google Cloud.

Scopri di più

This course is dedicated to equipping you with the knowledge and tools needed to uncover the unique challenges faced by MLOps teams when deploying and managing Generative AI models, and exploring how Vertex AI empowers AI teams to streamline MLOps processes and achieve success in Generative AI projects.

Scopri di più

This course equips machine learning practitioners with the essential tools, techniques, and best practices for evaluating both generative and predictive AI models. Model evaluation is a critical discipline for ensuring that ML systems deliver reliable, accurate, and high-performing results in production. Participants will gain a deep understanding of various evaluation metrics, methodologies, and their appropriate application across different model types and tasks. The course will emphasize the unique challenges posed by generative AI models and provide strategies for tackling them effectively. By leveraging Google Cloud's Vertex AI platform, participants will learn how to implement robust evaluation processes for model selection, optimization, and continuous monitoring.

Scopri di più

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Learners will get hands-on practice using Vertex AI Feature Store's streaming ingestion at the SDK layer.

Scopri di più

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

Scopri di più

This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.

Scopri di più

This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.

Scopri di più

This course covers how to implement the various flavors of production ML systems— static, dynamic, and continuous training; static and dynamic inference; and batch and online processing. You delve into TensorFlow abstraction levels, the various options for doing distributed training, and how to write distributed training models with custom estimators. This is the second course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Image Understanding with TensorFlow on Google Cloud course.

Scopri di più

Questo corso illustra i vantaggi dell'utilizzo di Vertex AI Feature Store, come migliorare l'accuratezza dei modelli di ML e come trovare le colonne di dati che forniscono le caratteristiche più utili. Il corso include inoltre contenuti e lab sul feature engineering utilizzando BigQuery ML, Keras e TensorFlow.

Scopri di più

Questo corso tratta la creazione di modelli ML con TensorFlow e Keras, il miglioramento dell'accuratezza dei modelli ML e la scrittura di modelli ML per l'uso su larga scala.

Scopri di più

Il corso inizia con una discussione sui dati: come migliorare la qualità dei dati ed eseguire analisi esplorative dei dati. Descriveremo Vertex AI AutoML e come creare, addestrare ed eseguire il deployment di un modello di ML senza scrivere una sola riga di codice. Comprenderai i vantaggi di Big Query ML. Discuteremo quindi di come ottimizzare un modello di machine learning (ML) e di come la generalizzazione e il campionamento possano aiutare a valutare la qualità dei modelli di ML per l'addestramento personalizzato.

Scopri di più

Questo corso presenta le offerte di intelligenza artificiale (AI) e machine learning (ML) su Google Cloud per la creazione di progetti di AI predittiva e generativa. Esplora le tecnologie, i prodotti e gli strumenti disponibili durante tutto il ciclo di vita data-to-AI, includendo le basi, lo sviluppo e le soluzioni di AI. Ha lo scopo di aiutare data scientist, sviluppatori di AI e ML engineer a migliorare le proprie abilità e conoscenze attraverso attività di apprendimento coinvolgenti ed esercizi pratici.

Scopri di più