Anton Tereshko
Menjadi anggota sejak 2024
Diamond League
27505 poin
Menjadi anggota sejak 2024
Dapatkan badge keahlian tingkat menengah dengan menyelesaikan kursus Membangun dan Men-Deploy Solusi Machine Learning di Vertex AI, tempat Anda akan belajar cara menggunakan platform Vertex AI Google Cloud, AutoML, dan layanan pelatihan kustom untuk melatih, mengevaluasi, menyesuaikan, menjelaskan, serta men-deploy model machine learning. Kursus badge keahlian ini diperuntukkan bagi Data Scientist dan Engineer Machine Learning profesional. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktis yang interaktif. Selesaikan Badge keahlian ini, dan challenge lab penilaian akhir, untuk menerima badge digital yang dapat Anda bagikan ke jaringan Anda.
Kursus ini memperkenalkan konsep penafsiran dan transparansi AI. Kursus ini membahas pentingnya transparansi AI bagi developer dan engineer. Kursus ini juga mengeksplorasi metode dan alat praktis untuk membantu mencapai penafsiran dan transparansi, baik dalam model data maupun AI.
Kursus ini memperkenalkan konsep responsible AI dan prinsip AI. Di dalamnya tercakup teknik untuk secara praktis mengidentifikasi keadilan dan bias serta memitigasi bias dalam praktik AI/ML. Kursus ini juga mengeksplorasi metode dan alat praktis untuk menerapkan praktik terbaik Responsible AI menggunakan produk Google Cloud dan alat open source.
Kursus ini dikhususkan untuk membekali Anda dengan pengetahuan dan alat yang diperlukan guna mengungkap tantangan unik yang dihadapi oleh tim MLOps saat men-deploy dan mengelola model AI Generatif, serta mengeksplorasi cara Vertex AI memberdayakan tim AI dalam menyederhanakan proses MLOps dan mencapai keberhasilan dalam project AI Generatif.
Kursus ini membekali para praktisi machine learning dengan alat, teknik, dan praktik terbaik penting untuk mengevaluasi model AI generatif dan prediktif. Evaluasi model adalah disiplin ilmu yang sangat penting untuk memastikan sistem ML memberikan hasil yang andal, akurat, dan berperforma tinggi dalam produksi. Peserta akan mendapatkan pemahaman yang mendalam mengenai berbagai metrik evaluasi, metodologi, dan penerapannya yang sesuai di berbagai jenis model dan tugas. Kursus ini akan berfokus pada tantangan unik yang dibuat oleh model AI generatif dan memberikan strategi untuk mengatasinya secara efektif. Dengan memanfaatkan platform Vertex AI di Google Cloud, para peserta akan belajar cara mengimplementasikan proses evaluasi yang kuat untuk melakukan pemilihan, pengoptimalan, dan pemantauan berkelanjutan pada model.
This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Learners will get hands-on practice using Vertex AI Feature Store's streaming ingestion at the SDK layer.
This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.
This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.
This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.
This course covers how to implement the various flavors of production ML systems— static, dynamic, and continuous training; static and dynamic inference; and batch and online processing. You delve into TensorFlow abstraction levels, the various options for doing distributed training, and how to write distributed training models with custom estimators. This is the second course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Image Understanding with TensorFlow on Google Cloud course.
This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.
This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.
The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.
Kursus ini memperkenalkan penawaran AI dan machine learning (ML) di Google Cloud yang membangun project AI prediktif dan generatif. Kursus ini akan membahas teknologi, produk, dan alat yang tersedia di seluruh siklus proses data ke AI, yang mencakup fondasi, pengembangan, dan solusi AI. Kursus ini bertujuan membantu data scientist, developer AI, dan engineer ML meningkatkan keterampilan dan pengetahuan mereka melalui pengalaman belajar yang menarik dan latihan praktik langsung.