Dinda Melita
Membro dal giorno 2021
Campionato Bronzo
3800 punti
Membro dal giorno 2021
Want to build ML models in minutes instead of hours using just SQL? BigQuery ML democratizes machine learning by letting data analysts create, train, evaluate, and predict with machine learning models using existing SQL tools and skills. In this series of labs, you will experiment with different model types and learn what makes a good model.
Blockchain and related technologies, such as distributed ledger and distributed apps, are becoming new value drivers and solution priorities in many industries. In this course you will gain hands-on experience with distributed ledger and the exploration of blockchain datasets in Google Cloud. It brings the research and solution work of Google's Allen Day into self-paced labs for you to run and learn directly. Since this course uses advanced SQL in BigQuery, a SQL-in-BigQuery refresher lab is at the start.
Data Catalog is deprecated and will be discontinued on January 30, 2026. You can still complete this course if you want to. For steps to transition your Data Catalog users, workloads, and content to Dataplex Catalog, see Transition from Data Catalog to Dataplex Catalog (https://cloud.google.com/dataplex/docs/transition-to-dataplex-catalog). Data Catalog is a fully managed and scalable metadata management service that empowers organizations to quickly discover, understand, and manage all of their data. In this quest you will start small by learning how to search and tag data assets and metadata with Data Catalog. After learning how to build your own tag templates that map to BigQuery table data, you will learn how to build MySQL, PostgreSQL, and SQLServer to Data Catalog Connectors.
In this series of labs you will learn how to use BigQuery to analyze NCAA basketball data with SQL. Build a Machine Learning Model to predict the outcomes of NCAA March Madness basketball tournament games.
Want to scale your data analysis efforts without managing database hardware? Learn the best practices for querying and getting insights from your data warehouse with this interactive series of BigQuery labs. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.
Questo corso introduttivo è unico tra le altre offerte di corsi. I lab sono stati selezionati per offrire ai professionisti IT la possibilità di fare pratica su argomenti e servizi che compaiono nell'esame di certificazione Google Cloud - Associate Cloud Engineer. Da IAM al networking, al deployment di Kubernetes Engine, questo corso si compone di lab specifici che metteranno alla prova le tue conoscenze su Google Cloud. Tieni presente che, sebbene la pratica con questi lab ti aiuterà a migliorare le tue competenze e capacità, ti consigliamo di rivedere anche la guida all'esame e altre risorse di preparazione disponibili.
Se sei uno sviluppatore cloud principiante che vuole fare ancora pratica Google Cloud Essentials, questo corso fa al caso tuo. Acquisirai esperienza pratica attraverso lab specifici su Cloud Storage e altri servizi per applicazioni chiave come Monitoring e Cloud Functions. Svilupperai competenze preziose applicabili a qualsiasi iniziativa Google Cloud.
Kubernetes è il sistema di orchestrazione dei container più diffuso e Google Kubernetes Engine è stato progettato specificamente per supportare i deployment Kubernetes gestiti in Google Cloud. In questo corso di livello avanzato, potrai esercitarti nella configurazione di immagini e container Docker e nel deployment di applicazioni Kubernetes Engine complete. Grazie a questo corso, apprenderai le competenze pratiche necessarie per integrare l'orchestrazione dei container nel tuo workflow. Stai cercando un Challenge Lab pratico per dimostrare le tue abilità e convalidare le tue conoscenze? Dopo aver completato questo corso, termina il Challenge Lab aggiuntivo alla fine del corso Esegui il deployment di applicazioni Kubernetes su Google Cloud per ricevere un esclusivo badge digitale Google Cloud.
In this introductory-level course, you get hands-on practice with the Google Cloud’s fundamental tools and services. Optional videos are provided to provide more context and review for the concepts covered in the labs. Google Cloud Essentials is a recommendeded first course for the Google Cloud learner - you can come in with little or no prior cloud knowledge, and come out with practical experience that you can apply to your first Google Cloud project. From writing Cloud Shell commands and deploying your first virtual machine, to running applications on Kubernetes Engine or with load balancing, Google Cloud Essentials is a prime introduction to the platform’s basic features.
This is the first of two Quests of hands-on labs is derived from the exercises from the book Data Science on Google Cloud Platform, 2nd Edition by Valliappa Lakshmanan, published by O'Reilly Media, Inc. In this first Quest, covering up through chapter 8, you are given the opportunity to practice all aspects of ingestion, preparation, processing, querying, exploring and visualizing data sets using Google Cloud tools and services.