Lin Ma
Date d'abonnement : 2024
Date d'abonnement : 2024
Créer des modèles de machine learning en quelques minutes au lieu de plusieurs heures grâce à SQL, ça vous intéresse ? BigQuery ML démocratise le machine learning en permettant aux analystes de données de créer, d'entraîner et d'évaluer des modèles de ML, puis de les utiliser pour faire des prédictions, en s'appuyant sur leurs outils SQL et leurs connaissances actuelles dans ce langage. Dans cette série d'ateliers, vous allez essayer différents types de modèles et apprendre ce qui caractérise un bon modèle.
Terminez le cours d'introduction Dégager des insights des données BigQuery pour recevoir un badge démontrant vos compétences dans les domaines suivants : l'écriture de requêtes SQL, l'interrogation de tables publiques, le chargement d'exemples de données dans BigQuery, la résolution d'erreurs de syntaxe courantes avec l'outil de validation des requêtes de BigQuery et la création de rapports dans Looker Studio en se connectant aux données BigQuery.
Terminez le cours intermédiaire Créer une infrastructure avec Terraform sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : les principes d'Infrastructure as Code (IaC) avec Terraform, le provisionnement et la gestion des ressources Google Cloud avec des configurations Terraform, la gestion efficace des états (local et distant) et la modularisation du code Terraform à des fins de réutilisabilité et d'organisation.
Dans le cours "Concevoir une architecture avec Google Kubernetes Engine : principes de bases," nous allons vous présenter l'organisation et les principes de Google Cloud. Nous vous apprendrons ensuite à créer et gérer des conteneurs de logiciels, puis nous vous ferons découvrir l'architecture de Kubernetes.