Inscreva-se Fazer login

Aplique suas habilidades no console do Google Cloud

RANDY BLESSING OSEI-NARTEY

Participante desde 2024

Liga Prata

11070 pontos
Guia de estudo para Engenheiro profissional de aprendizado de máquina Earned Feb 3, 2025 EST
ML Pipelines on Google Cloud - Português Brasileiro Earned Oct 10, 2024 EDT
Operações de machine learning (MLOps) com a Vertex AI: avaliação de modelo Earned Oct 10, 2024 EDT
Operações de Machine Learning (MLOps) para IA Generativa Earned Oct 10, 2024 EDT
Introdução aos modelos de linguagem grandes Earned Oct 9, 2024 EDT
Introdução à IA generativa Earned Oct 4, 2024 EDT

Este curso ajuda a criar um plano de estudo para o exame de certificação Professional Machine Learning Engineer (PMLE). É possível conferir a amplitude e o escopo dos domínios abordados no exame. Os estudantes também podem acompanhar os preparativos para o exame e criar planos de estudo individuais.

Saiba mais

Neste curso, você vai aprender com engenheiros e instrutores de ML que trabalham com o desenvolvimento de última geração dos pipelines de ML aqui no Google Cloud. Nos primeiros módulos, vamos abordar o TensorFlow Extended (ou TFX), que é uma plataforma de machine learning do Google baseada no TensorFlow criada para gerenciar pipelines e metadados de ML. Você vai conhecer os componentes e a orquestração de um pipeline com o TFX. Também vamos abordar como é possível automatizar os pipelines usando a integração e a implantação contínuas e como gerenciar os metadados de ML. Depois disso, vamos mudar o foco para discutir como podemos automatizar e reutilizar os pipelines de ML em vários frameworks de machine learning, como tensorflow, pytorch, scikit-learn e xgboost. Você também vai aprender a usar outra ferramenta no Google Cloud, o Cloud Composer, para orquestrar seus pipelines de treinamento contínuo. Por fim, vamos mostrar como usar o MLflow para gerenciar o ciclo de vida completo do ma…

Saiba mais

Neste curso, profissionais de machine learning vão conhecer as principais ferramentas, técnicas e práticas recomendadas para avaliar modelos de IA generativa e preditiva. Essa avaliação é muito importante para garantir que os sistemas de ML produzam resultados confiáveis, precisos e de alto desempenho na produção. Os participantes vão entender em detalhes as várias métricas e metodologias de avaliação, além da aplicação correta delas em diferentes tarefas e tipos de modelo. O foco do curso está nos desafios específicos dos modelos de IA generativa e nas estratégias para lidar com eles de forma eficaz. Usando a plataforma Vertex AI do Google Cloud, os participantes vão aprender a implementar processos robustos de avaliação para selecionar e otimizar os modelos, com monitoramento contínuo.

Saiba mais

O objetivo desse curso é equipar você com o conhecimento e as ferramentas necessários para resolver os desafios enfrentados por equipes de MLOps durante o desenvolvimento e gerenciamento de modelos de IA generativa. Também queremos mostrar como a Vertex AI ajuda equipes de IA a simplificar processos de MLOps e a alcançar o sucesso em projetos de IA generativa.

Saiba mais

Este é um curso de microlearning de nível introdutório que explica o que são modelos de linguagem grandes (LLM), os casos de uso em que podem ser aplicados e como é possível fazer o ajuste de comandos para aprimorar o desempenho dos LLMs. O curso também aborda as ferramentas do Google que ajudam a desenvolver seus próprios apps de IA generativa.

Saiba mais

Este é um curso de microaprendizagem introdutório que busca explicar a IA generativa: o que é, como é usada e por que ela é diferente de métodos tradicionais de machine learning. O curso também aborda as ferramentas do Google que ajudam você a desenvolver apps de IA generativa.

Saiba mais