参加 ログイン

Google Cloud コンソールでスキルを試す

OSEI-NARTEY RANDY BLESSING

メンバー加入日: 2024

シルバーリーグ

11070 ポイント
Professional Machine Learning Engineer 学習ガイド Earned 2月 3, 2025 EST
ML Pipelines on Google Cloud - 日本語版 Earned 10月 10, 2024 EDT
Vertex AI を使用した ML オペレーション(MLOps): モデルの評価 Earned 10月 10, 2024 EDT
生成 AI のための ML オペレーション(MLOps) Earned 10月 10, 2024 EDT
大規模言語モデルの概要 Earned 10月 9, 2024 EDT
生成 AI の概要 Earned 10月 4, 2024 EDT

このコースでは、PMLE(Professional Machine Learning Engineer)認定資格試験に向けた学習計画を作成できます。学習者は、試験の範囲を把握したうえで、また、試験への準備状況を把握して、個々の学習計画を作成します。

詳細

このコースでは、Google Cloud で最先端の ML パイプラインに携わっている ML エンジニアおよびトレーナーたちから知識を吸収することができます。 最初のいくつかのモジュールで、ML パイプラインとメタデータの管理用 TensorFlow を基盤とする Google の本番環境向け機械学習プラットフォーム TensorFlow Extended(TFX)について説明します。パイプラインのコンポーネントについて、そして TFX を使用したパイプラインのオーケストレーションについて学習します。また、継続的インテグレーションと継続的デプロイを通じたパイプラインの自動化の方法と、ML メタデータの管理方法についても学習します。その後、焦点を変えて、TensorFlow、PyTorch、Scikit Learn、XGBoost などの複数の ML フレームワーク全体にわたる ML パイプラインの自動化と再利用の方法について説明します。 さらに、Google Cloud のもう 1 つのツール、Cloud Composer を継続的なトレーニング パイプラインのオーケストレーションに活用する方法についても学習します。最後は、MLflow を使用して機械学習の完全なライフサイクルを管理する方法の解説で締めくくります。

詳細

このコースでは、ML の実務担当者に、生成 AI モデルと予測 AI モデルの両方を評価するための重要なツール、手法、ベスト プラクティスを身につけていただきます。モデル評価は、ML システムが本番環境で信頼性が高く、正確で、高性能な結果を確実に提供するための重要な分野です。 参加者は、さまざまな評価指標、方法論のほか、さまざまなモデルタイプやタスクにおけるそれらの適切な適用について理解を深めます。このコースでは、生成 AI モデルによってもたらされる固有の課題に重点を置き、それらの課題に効果的に取り組むための戦略を提供します。参加者は、Google Cloud の Vertex AI プラットフォームを活用して、モデルの選択、最適化、継続的なモニタリングのための堅牢な評価プロセスを実装する方法を学びます。

詳細

このコースでは、生成 AI モデルのデプロイと管理において MLOps チームが直面する特有の課題に対処するために必要な知識とツールを提供し、AI チームが MLOps プロセスを合理化して生成 AI プロジェクトを成功させるうえで Vertex AI がどのように役立つかを説明します。

詳細

このコースは、大規模言語モデル(LLM)とは何か、どのようなユースケースで活用できるのか、プロンプトのチューニングで LLM のパフォーマンスを高めるにはどうすればよいかについて学習する、入門レベルのマイクロ ラーニング コースです。独自の生成 AI アプリを開発する際に利用できる Google ツールも紹介します。

詳細

この入門レベルのマイクロラーニング コースでは、生成 AI の概要、利用方法、従来の機械学習の手法との違いについて説明します。独自の生成 AI アプリを作成する際に利用できる Google ツールも紹介します。

詳細