Amr Samra
Jest członkiem od 2020
Liga brązowa
900 pkt.
Jest członkiem od 2020
This course helps learners create a study plan for the PMLE (Professional Machine Learning Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.
This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.
The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.
This course explores what ML is and what problems it can solve. The course also discusses best practices for implementing machine learning. You’re introduced to Vertex AI, a unified platform to quickly build, train, and deploy AutoML machine learning models. The course discusses the five phases of converting a candidate use case to be driven by machine learning, and why it’s important to not skip them. The course ends with recognizing the biases that ML can amplify and how to recognize them.
Ukończ szkolenie wprowadzające Przygotowywanie danych do użycia z interfejsami ML w Google Cloud, aby zdobyć odznakę potwierdzającą zdobycie następujących umiejętności: czyszczenie danych przy użyciu usługi Dataprep firmy Trifacta, uruchamianie potoków danych w Dataflow, tworzenie klastrów i uruchamianie zadań Apache Spark w Dataproc, a także wywoływanie interfejsów API dotyczących uczenia maszynowego, w tym Cloud Natural Language API, Google Cloud Speech-to-Text API oraz Video Intelligence API. Odznaka umiejętności to wyjątkowa cyfrowa odznaka wydawana przez Google Cloud, która potwierdza Twoją wiedzę o produktach i usługach Google Cloud. Aby ją zdobyć, musisz pokazać, że potrafisz zastosować zdobytą wiedzę w praktycznym, interaktywnym środowisku. Ukończ to szkolenie oraz moduł Challenge Lab, aby zdobyć odznakę umiejętności, którą możesz udostępnić w swojej sieci kontaktów.
This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.