Arush Das
成为会员时间:2025
黄金联赛
8318 积分
成为会员时间:2025
本課程旨在提供必要的知識和工具,協助您探索機器學習運作團隊在部署及管理生成式 AI 模型時面臨的獨特挑戰,並瞭解 Vertex AI 如何幫 AI 團隊簡化機器學習運作程序,打造成效非凡的生成式 AI 專案。
本課程涵蓋「AI 隱私權」和「AI 安全性」這兩個重要主題。我們將介紹實用的方法和工具,協助您運用 Google Cloud 產品和開放原始碼工具,導入 AI 隱私權和安全性的建議做法。
本課程旨在說明 AI 的可解釋性和透明度概念、探討 AI 透明度對開發人員和工程師的重要性。課程中也會介紹實務方法和工具,有助於讓資料和 AI 模型透明且可解釋。
本課程旨在說明負責任 AI 技術的概念和 AI 開發原則,同時介紹各項技術,在實務上找出公平性和偏誤,減少 AI/機器學習做法上的偏誤。我們也將探討實用方法和工具,透過 Google Cloud 產品和開放原始碼工具,導入負責任 AI 技術的最佳做法。
完成 使用 Gemini 多模態功能和多模態 RAG 檢查複合型文件 技能徽章中階課程,即可證明您具備下列技能: 透過 Gemini 多模態功能,使用多模態提示從文字和影像資料擷取資訊、生成影片說明,以及擷取影片以外的額外資訊; 透過 Gemini 的多模態檢索增強生成 (RAG) 功能,為含有文字和圖片的文件建構中繼資料、取得所有相關文字分塊,以及顯示引用資料。 「技能徽章」是 Google Cloud 核發的獨家數位徽章,用於肯定您在 Google Cloud 產品和服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境中應用相關知識。完成本課程及結業評量挑戰研究室,即可取得技能徽章,並與親友分享。
這堂課程會介紹 AI 搜尋技術、工具和應用程式。主題涵蓋使用向量嵌入執行語意搜尋;結合語意和關鍵字做法的混合型搜尋機制;以及運用檢索增強生成 (RAG) 技術建構有基準的 AI 代理,盡可能減少 AI 幻覺。您可以實際使用 Vertex AI Vector Search,打造智慧型搜尋引擎。
本課程會介紹 Vertex AI Studio。您可以運用這項工具和生成式 AI 模型互動、根據商業構想設計原型,並投入到正式環境。透過身歷其境的應用實例、有趣的課程及實作實驗室,您將能探索從提示到正式環境的生命週期,同時學習如何將 Vertex AI Studio 運用在多模態版 Gemini 應用程式、提示設計、提示工程和模型調整。這個課程的目標是讓您能運用 Vertex AI Studio,在專案中發揮生成式 AI 的潛能。
本課程說明如何使用深度學習來建立圖像說明生成模型。您將學習圖像說明生成模型的各個不同組成部分,例如編碼器和解碼器,以及如何訓練和評估模型。在本課程結束時,您將能建立自己的圖像說明生成模型,並使用模型產生圖像說明文字。
這堂課程將說明變換器架構,以及基於變換器的雙向編碼器表示技術 (BERT) 模型,同時帶您瞭解變換器架構的主要組成 (如自我注意力機制) 和如何用架構建立 BERT 模型。此外,也會介紹 BERT 適用的各種任務,像是文字分類、問題回答和自然語言推論。課程預計約 45 分鐘。
本課程概要說明解碼器與編碼器的架構,這種強大且常見的機器學習架構適用於序列對序列的任務,例如機器翻譯、文字摘要和回答問題。您將認識編碼器與解碼器架構的主要元件,並瞭解如何訓練及提供這些模型。在對應的研究室逐步操作說明中,您將學習如何從頭開始使用 TensorFlow 寫程式,導入簡單的編碼器與解碼器架構來產生詩詞。
本課程將介紹注意力機制,說明這項強大技術如何讓類神經網路專注於輸入序列的特定部分。此外,也將解釋注意力的運作方式,以及如何使用注意力來提高各種機器學習任務的成效,包括機器翻譯、文字摘要和回答問題。
本課程將介紹擴散模型,這是一種機器學習模型,近期在圖像生成領域展現亮眼潛力。概念源自物理學,尤其深受熱力學影響。過去幾年來,在學術界和業界都是炙手可熱的焦點。在 Google Cloud 中,擴散模型是許多先進圖像生成模型和工具的基礎。課程將介紹擴散模型背後的理論,並說明如何在 Vertex AI 上訓練和部署這些模型。