Kamal Agrawal
Participante desde 2021
Participante desde 2021
Este é um curso de microlearning de nível introdutório que explica o que são modelos de linguagem grandes (LLM), os casos de uso em que podem ser aplicados e como é possível fazer o ajuste de comandos para aprimorar o desempenho dos LLMs. O curso também aborda as ferramentas do Google que ajudam a desenvolver seus próprios apps de IA generativa.
Este é um curso de microaprendizagem introdutório que busca explicar a IA responsável: o que é, qual é a importância dela e como ela é aplicada nos produtos do Google. Ele também contém os 7 princípios de IA do Google.
Este é um curso de microaprendizagem introdutório que busca explicar a IA generativa: o que é, como é usada e por que ela é diferente de métodos tradicionais de machine learning. O curso também aborda as ferramentas do Google que ajudam você a desenvolver apps de IA generativa.
Este é o segundo curso da série "Data to Insights". Vamos aprender a fazer a ingestão de novos conjuntos de dados externos no BigQuery e visualizá-los no Looker Studio. Também vamos analisar conceitos intermediários de SQL, como as operações JOIN e UNION em várias tabelas, para analisar dados de diversas fontes. Observação: Mesmo que você tenha experiência em SQL, há aspectos específicos do BigQuery (como usar o cache de consultas e os caracteres curinga de tabela) que podem ser novidade para você. Depois de terminar este curso, faça sua inscrição no "Achieving Advanced Insights with BigQuery".
Este é o segundo dos cinco cursos do Certificado Google Cloud Data Analytics. O assunto deste curso é a estruturação e a organização dos dados. Você vai adquirir experiência prática com a arquitetura de data lakehouse e os componentes de nuvem como o BigQuery, o Google Cloud Storage e o DataProc, usados para armazenar, analisar e processar grandes conjuntos de dados.
O terceiro curso desta série é "Achieving Advanced Insights with BigQuery". Para continuar desenvolvendo seus conhecimentos sobre SQL, vamos aprender a usar funções avançadas e dividir uma consulta completa em etapas gerenciáveis. Você também vai conhecer a arquitetura interna do BigQuery (armazenamento fragmentado com base em colunas) e tópicos avançados do SQL, como campos aninhados e repetidos usando matrizes e structs. Por fim, vamos aprender a otimizar consultas para melhorar o desempenho e a proteger seus dados com visualizações autorizadas. Depois de concluir este curso, inscreva-se no "Applying Machine Learning to Your Data with Google Cloud".
Neste curso, você vai entender como o Gemini, um colaborador com tecnologia de IA generativa do Google Cloud, ajuda a analisar os dados dos clientes e a prever as vendas de produtos. Além disso, você vai aprender a identificar, categorizar e desenvolver novos clientes usando seus dados no BigQuery. Usando laboratórios práticos, você vai descobrir como o Gemini melhora a análise de dados e os fluxos de trabalho de machine learning. A Duet AI agora é o Gemini, nosso modelo de última geração.
Conquiste o selo de habilidade introdutório Preparar dados para APIs de ML no Google Cloud para demonstrar que você é capaz de: limpar dados com o Dataprep by Trifacta, executar pipelines de dados no Dataflow, criar clusters e executar jobs do Apache Spark no Dataproc e chamar APIs de ML, incluindo as APIs Cloud Natural Language, Google Cloud Speech-to-Text e Video Intelligence. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Google Cloud e testam sua habilidade de aplicar esse conhecimento em um ambiente prático e interativo. Conclua este curso com selo de habilidade e o laboratório com desafio da avaliação final para receber um selo digital que pode ser compartilhado nas suas redes sociais e currículo.
Conclua o selo de habilidade intermediário Dados de engenharia para modelagem preditiva com o BigQuery ML para mostrar que você sabe: criar pipelines de transformação de dados no BigQuery usando o Dataprep by Trifacta; usar o Cloud Storage, o Dataflow e o BigQuery para criar fluxos de trabalho de extração, transformação e carregamento de dados (ELT); e criar modelos de machine learning usando o BigQuery ML. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Cloud e comprovam sua habilidade de aplicar seu conhecimento em um ambiente prático e interativo. Conclua o curso com selo de habilidade e o laboratório com desafio da avaliação final para receber um selo digital que pode ser compartilhado com sua rede.
Conclua o selo de habilidade intermediário Criar modelos de ML com o BigQuery ML para mostrar que você sabe: criar e avaliar modelos de machine learning usando o BigQuery ML para fazer previsões de dados. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Cloud e comprovam a habilidade de aplicar seu conhecimento em um ambiente prático e interativo. Conclua este curso e o laboratório com desafio da avaliação final para receber um selo de habilidade que pode ser compartilhado com seus contatos.
A incorporação de machine learning em pipelines de dados aumenta a capacidade de extrair insights dessas informações. Neste curso, mostramos as várias formas de incluir essa tecnologia em pipelines de dados do Google Cloud. Para casos de pouca ou nenhuma personalização, vamos falar sobre o AutoML. Para usar recursos de machine learning mais personalizados, vamos apresentar os Notebooks e o machine learning do BigQuery (BigQuery ML). No curso, você também vai aprender sobre a produção de soluções de machine learning usando a Vertex AI.
O processamento de dados de streaming é cada vez mais usado pelas empresas para gerar métricas sobre as operações comerciais em tempo real. Neste curso, você vai aprender a criar pipelines de dados de streaming no Google Cloud. O Pub/Sub é apresentado como a ferramenta para gerenciar dados de streaming de entrada. No curso, também abordamos a aplicação de agregações e transformações a dados de streaming usando o Dataflow, além de formas de armazenar registros processados no BigQuery ou no Bigtable para análise. Os participantes vão ganhar experiência prática na criação de componentes de pipelines de dados de streaming no Google Cloud usando o Qwiklabs.
Os pipelines de dados geralmente se encaixam em um desses três paradigmas: extração e carregamento (EL), extração, carregamento e transformação (ELT) ou extração, transformação e carregamento (ETL). Este curso descreve qual paradigma deve ser usado em determinadas situações e quando isso ocorre com dados em lote. Além disso, vamos falar sobre várias tecnologias no Google Cloud para transformação de dados, incluindo o BigQuery, a execução do Spark no Dataproc, gráficos de pipeline no Cloud Data Fusion e processamento de dados sem servidor com o Dataflow. Os participantes vão ganhar experiência prática na criação de componentes de pipelines de dados no Google Cloud usando o Qwiklabs.
Este curso ajuda estudantes a criar um plano de estudo para o exame de certificação PDE (Professional Data Engineer). É possível conferir a amplitude e o escopo dos domínios abordados no exame. Os estudantes também podem acompanhar os preparativos para o exame e criar planos de estudos individuais.
Conclua o selo de habilidade intermediário Criar um data warehouse com o BigQuery para mostrar que você sabe mesclar dados para criar novas tabelas; solucionar problemas de mesclagens; adicionar dados ao final com uniões; criar tabelas particionadas por data; além de trabalhar com JSON, matrizes e structs no BigQuery. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência nos produtos e serviços do Cloud, comprovando sua capacidade de aplicar o conhecimento em um ambiente prático e interativo. Conclua o curso com selo de habilidade e o laboratório com desafio da avaliação final para receber uma certificação digital que você pode compartilhar com seus contatos.
Os dois principais componentes de um pipeline de dados são data lakes e warehouses. Neste curso, destacamos os casos de uso para cada tipo de armazenamento e as soluções de data lake e warehouse disponíveis no Google Cloud de forma detalhada e técnica. Além disso, também descrevemos o papel de um engenheiro de dados, os benefícios de um pipeline de dados funcional para operações comerciais e analisamos por que a engenharia de dados deve ser feita em um ambiente de nuvem. Este é o primeiro curso da série "Engenharia de dados no Google Cloud". Após a conclusão, recomendamos que você comece o curso "Como criar pipelines de dados em lote no Google Cloud".
Conclua o selo de habilidade introdutório Gerar insights a partir de dados do BigQuery para mostrar que você sabe gravar consultas SQL, consultar tabelas públicas e carregar dados de amostra no BigQuery, solucionar erros comuns de sintaxe com o validador de consultas no BigQuery e criar relatórios no Looker Studio fazendo a conexão com dados do BigQuery. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência nos produtos e serviços do Cloud, comprovando sua capacidade de aplicar esse conhecimento em um ambiente prático e interativo. Conclua este curso com selo de habilidade e o laboratório com desafio da avaliação final para receber um selo digital que pode ser compartilhado com seus contatos.
Este curso apresenta os produtos e serviços de Big Data e machine learning do Google Cloud que auxiliam no ciclo de vida de dados para IA. Ele explica os processos, os desafios e os benefícios de criar um pipeline de Big Data e modelos de machine learning com a Vertex AI no Google Cloud.
Networking in Google Cloud é uma série de 6 cursos. Este é o primeiro curso deles, Networking in Google Cloud: Fundamentals. Este curso apresenta uma visão geral completa dos conceitos fundamentais de rede, incluindo princípios básicos, nuvens privadas virtuais (VPCs) e compartilhamento de redes VPC. Ele também aborda técnicas de geração de registros e monitoramento de rede.
Conquiste um selo de habilidade ao concluir o curso Como criar uma rede segura do Google Cloud, que apresenta vários recursos relacionados a redes para criar, escalonar e proteger seus aplicativos no Google Cloud. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Cloud e comprovam sua habilidade de aplicar esse conhecimento em um ambiente prático e interativo. Conclua o curso e o laboratório com desafio da avaliação final para receber um selo digital que pode ser compartilhado com seus contatos.
Conquiste um selo de habilidade ao concluir o curso Como configurar um ambiente de desenvolvimento de apps no Google Cloud. Nele, você aprende a criar e conectar uma infraestrutura em nuvem focada em armazenamento usando recursos básicos das seguintes tecnologias: Cloud Storage, Identity and Access Management, Cloud Functions e Pub/Sub. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Google Cloud e comprovam sua capacidade de aplicar seu conhecimento em um ambiente prático e interativo. Conclua este curso com selo de habilidade e o laboratório com desafio da avaliação final para receber um selo que pode ser compartilhado com seus contatos.
Neste curso intensivo sob demanda, os participantes vão conhecer os serviços abrangentes e flexíveis de infraestrutura e plataforma fornecidos pelo Google Cloud, com foco no Compute Engine. Com o auxílio de videoaulas, demonstrações e laboratórios práticos, os participantes têm chance de conhecer e implantar elementos da solução, incluindo componentes de infraestrutura, como redes, máquinas virtuais e serviços de aplicativos. Você vai aprender a usar o Google Cloud no Console e no Cloud Shell. Além disso, vamos detalhar o papel de um arquiteto de nuvem, abordagens de design de infraestruturas, configuração de redes virtuais com a nuvem privada virtual (VPC), projetos, redes, sub-redes, endereços IP, rotas e regras de firewall.
Este curso é perfeito para desenvolvedores de nuvem iniciantes que estão procurando prática além do Google Cloud Essentials. Você vai ganhar experiência em laboratórios que se aprofundam no Cloud Storage e em outros serviços de aplicativos fundamentais, como Monitoring e Cloud Functions. Você vai desenvolver habilidades importantes que podem ser aplicadas a qualquer iniciativa do Google Cloud.
Nesta Quest de nível introdutório, você terá acesso a treinamentos práticos com os principais serviços e ferramentas do Google Cloud Platform. A Quest "GCP Essentials" é a primeira recomendação para quem está aprendendo a usar o Google Cloud. Com ela, quem tem pouco ou nenhum conhecimento sobre nuvem ganha experiência prática para aplicar no primeiro projeto do GCP. Esta Quest proporciona um contato inicial com os recursos fundamentais da plataforma, como o registro de comandos do Cloud Shell, a implementação da sua primeira máquina virtual, a execução de aplicativos no Kubernetes Engine e o balanceamento de carga. Assista também os vídeos rápidos que explicam os conceitos principais de cada laboratório.
"Noções básicas do Google Cloud: infraestrutura principal" é uma apresentação da terminologia e de conceitos importantes para trabalhar com o Google Cloud. Usando vídeos e laboratórios práticos, o curso apresenta e compara vários serviços de armazenamento e computação do Google Cloud, além de ferramentas importantes para o gerenciamento de políticas e recursos.