Cronje Marco
メンバー加入日: 2023
シルバーリーグ
14885 ポイント
メンバー加入日: 2023
A short course on defining and managing teams and organizations in Google AppSheet.
In this course you will learn the fundamentals of no-code app development and recognize use cases for no-code apps. The course provides an overview of the AppSheet no-code app development platform and its capabilities. You learn how to create an app with data from spreadsheets, create the app’s user experience using AppSheet views and publish the app to end users.
Gmail は Google のクラウドベースのメールサービスです。ウェブブラウザだけであらゆるパソコンやデバイスからメッセージにアクセスできます。 このコースでは、メッセージの作成、送信、返信方法について学習します。また、Gmail メッセージに適用できるいくつかの一般的な操作についても説明し、Gmail のラベルを使用してメールを整理する方法を学習します。 一般的な Gmail の設定と機能について説明します。たとえば、個人の連絡先やグループを管理する方法、Gmail の受信トレイを自分の作業の進め方に合わせてカスタマイズする方法、独自のメール署名とテンプレートを作成する方法について学習します。 Google は検索で有名です。Gmail にも強力な検索機能とフィルタ機能が含まれています。Gmail の高度な検索機能を使用して、メッセージを自動的にフィルタする方法を学習します。
このコースでは、予測 AI と生成 AI の両方のプロジェクトを構築できる、Google Cloud の AI および機械学習(ML)サービスについて紹介します。AI の基盤、開発、ソリューションを含むデータから AI へのライフサイクル全体で利用可能なテクノロジー、プロダクト、ツールについて説明するとともに、魅力的な学習体験と実践的なハンズオン演習を通じて、データ サイエンティスト、AI 開発者、ML エンジニアの方々がスキルや知識を強化できるようサポートすることを目指しています。
企業における AI と ML の利用が拡大し続けるなか、責任を持ってそれを構築することの重要性も増しています。多くの企業にとっての課題は、責任ある AI と口で言うのは簡単でも、それを実践するのは難しいということです。このコースは、責任ある AI を組織で運用化する方法を学びたい方に最適です。 このコースでは、Google Cloud が責任ある AI を現在どのように運用化しているかを、ベスト プラクティスや教訓と併せて学び、責任ある AI に対する独自のアプローチを構築するためのフレームワークとして活用できるようにします。
このコースでは、生成 AI モデルとのやりとり、ビジネス アイデアのプロトタイプ作成、本番環境へのリリースを行うツールである Vertex AI Studio をご紹介します。現実感のあるユースケースや、興味深い講義、ハンズオンラボを通して、プロンプトの作成から成果の実現に至るまでのライフサイクルを詳細に学び、Gemini マルチモーダル アプリケーションの開発、プロンプトの設計、モデルのチューニングに Vertex AI を活用する方法を学習します。Vertex AI Studio を利用することで、生成 AI をプロジェクトに最大限に活かせるようになることを目指します。
「Introduction to Generative AI」、「Introduction to Large Language Models」、「Introduction to Responsible AI」の各コースを修了すると、スキルバッジを獲得できます。最終テストに合格することで、ジェネレーティブ AI の基礎概念を理解していることが証明されます。 スキルバッジは、Google Cloud のプロダクトとサービスに関する知識を認定するために Google Cloud が発行するデジタルバッジです。スキルバッジは、ソーシャル メディアの公開プロフィールを作成してそこに追加することで一般向けに共有できます。
このコースは、大規模言語モデル(LLM)とは何か、どのようなユースケースで活用できるのか、プロンプトのチューニングで LLM のパフォーマンスを高めるにはどうすればよいかについて学習する、入門レベルのマイクロ ラーニング コースです。独自の生成 AI アプリを開発する際に利用できる Google ツールも紹介します。
この入門レベルのマイクロラーニング コースでは、責任ある AI の概要と重要性、および Google が責任ある AI を自社プロダクトにどのように実装しているのかについて説明します。また、Google の AI に関する 7 つの原則についても説明します。
この入門レベルのマイクロラーニング コースでは、生成 AI の概要、利用方法、従来の機械学習の手法との違いについて説明します。独自の生成 AI アプリを作成する際に利用できる Google ツールも紹介します。
これは「Data to Insights」コースシリーズの 2 つ目のコースです。ここでは、新しい外部データセットを BigQuery に取り込み、Looker Studio で可視化する方法について説明します。また、複数テーブルの JOIN と UNION など、中級者向けの SQL のコンセプトについても説明します。JOIN や UNION を使用すると、複数のデータソースのデータを分析できます。 注: すでに SQL に関する知識をお持ちの方も、BigQuery に固有の要素(クエリ キャッシュやテーブル ワイルドカードの処理など)について学ぶことができます。 このコースを修了したら、「Achieving Advanced Insights with BigQuery」コースに登録してください。
この初級コースでは、Google Cloud のデータ分析ワークフローについてと、データを探索、分析、可視化し、得られた情報をステークホルダーと共有するために使用できるツールについて学びます。ケーススタディを取り上げながら、ハンズオンラボ、講義、理解度チェック、デモを通じて、元データセットをクリーンなデータに、さらには効果的な可視化やダッシュボードに生まれ変わらせる方法を示します。このコースは、Google Cloud で成果を上げる方法を知りたいと思っているデータ実務担当者にも、さらなるキャリアアップを目指している方にも、専門知識を深める入口として最適な内容になっています。データ分析業務を実際に行っている、あるいはデータ分析を利用している大多数の人に有益です。
このコースでは、データ アナリストが共通して直面する課題と、その課題を Google Cloud のビッグデータ ツールを使用して解決する方法を取り上げます。その過程で SQL を学習しながら、BigQuery と Dataprep を使用してデータセットを分析し、変換する方法について理解を深めます。 これは「From Data to Insights with Google Cloud」シリーズの最初のコースです。このコースを修了したら、「Creating New BigQuery Datasets and Visualizing Insights」コースを受講してください。
「BigQuery のデータから分析情報を引き出す」の入門スキルバッジを獲得すると、 SQL クエリの作成、一般公開テーブルに対するクエリの実行、BigQuery へのサンプルデータの読み込み、BigQuery でのクエリ バリデータを使用した一般的な構文エラーのトラブルシューティング、 BigQuery データへの接続による Looker Studio でのレポート作成といったスキルを実証できます。 スキルバッジは、Google Cloud のプロダクトとサービスの 習熟度を示す Google Cloud 発行の限定デジタルバッジで、インタラクティブなハンズオン環境での知識の応用力を 証明するものです。このスキルバッジ コースと最終評価チャレンジラボを修了して スキルバッジを獲得し、ネットワークで共有しましょう。
この入門レベルのクエストでは、Google Cloud の基本的なツールやサービスに関する実践演習を行います。「Google Cloud Essentials」は Qwiklabs で特に人気のあるクエストですが、それはクラウドの予備知識がほとんどなくても、あらゆる Google Cloud プロジェクトに応用できる実際的な経験を積めるからです。 「Google Cloud Essentials」では、Cloud Shell コマンドの記述、初めての仮想マシンのデプロイ、Kubernetes Engine 上でのアプリケーション実行と負荷分散など、Google Cloud の主な機能を紹介します。主なコンセプトは 1 分間のビデオで説明されています。
このコースでは、データから AI へのライフサイクルをサポートする Google Cloud のビッグデータと ML のプロダクトやサービスを紹介します。また、Google Cloud で Vertex AI を使用してビッグデータ パイプラインと ML モデルを作成する際のプロセス、課題、メリットについて説明します。