加入 登录

在 Google Cloud 控制台中运用您的技能

Leonardo Godói

成为会员时间:2024

钻石联赛

7090 积分
利用 Vertex AI 实现机器学习运维 (MLOps):模型评估 Earned Feb 28, 2025 EST
在 Vertex AI 上构建和部署机器学习解决方案 Earned Feb 26, 2025 EST
Machine Learning Operations (MLOps) with Vertex AI: Manage Features Earned Feb 21, 2025 EST
Professional Machine Learning Engineer Study Guide Earned Feb 20, 2025 EST
Machine Learning Operations (MLOps): Getting Started Earned Feb 20, 2025 EST
Production Machine Learning Systems Earned Feb 14, 2025 EST

本课程能让机器学习从业者掌握评估生成式和预测式 AI 模型的基本工具、方法和最佳实践。要确保机器学习系统在实际运用中提供可靠、准确、高效的结果,做好模型评估至关重要。 学员将深入了解各项评估指标、方法及如何在不同模型类型和任务中适当应用这些指标和方法。课程将着重介绍生成式 AI 模型带来的独特挑战,并提供有效解决这些挑战的策略。通过利用 Google Cloud 的 Vertex AI Platform,学员可学习如何在模型选择、优化和持续监控工作中实施卓有成效的评估流程。

了解详情

完成在 Vertex AI 上构建和部署机器学习解决方案课程,赢取中级技能徽章。 在此课程中,您将了解如何使用 Google Cloud 的 Vertex AI Platform、AutoML 以及自定义训练服务来 训练、评估、调优、解释和部署机器学习模型。 此技能徽章课程的目标受众是专业的数据科学家和机器学习 工程师。 技能徽章是由 Google Cloud 颁发的专属数字徽章,旨在认可 您对 Google Cloud 产品与服务的熟练度;您需要在 交互式实操环境中参加考核,证明自己运用所学知识的能力后才能获得此徽章。完成此技能徽章课程 和作为最终评估的实验室挑战赛,即可获得数字徽章, 在您的人际圈中炫出自己的技能。

了解详情

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Learners will get hands-on practice using Vertex AI Feature Store's streaming ingestion at the SDK layer.

了解详情

This course helps learners create a study plan for the PMLE (Professional Machine Learning Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

了解详情

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

了解详情

This course covers how to implement the various flavors of production ML systems— static, dynamic, and continuous training; static and dynamic inference; and batch and online processing. You delve into TensorFlow abstraction levels, the various options for doing distributed training, and how to write distributed training models with custom estimators. This is the second course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Image Understanding with TensorFlow on Google Cloud course.

了解详情