Inscreva-se Fazer login

Aplique suas habilidades no console do Google Cloud

Anton Andreenko

Participante desde 2021

Liga Diamante

19385 pontos
Natural Language Processing on Google Cloud Earned Jun 27, 2024 EDT
Computer Vision Fundamentals with Google Cloud Earned Jun 23, 2024 EDT
Criação de sistemas de machine learning de produção Earned Mar 17, 2024 EDT
Machine learning nas empresas Earned Mar 6, 2024 EST
Engenharia de atributos Earned Dec 31, 2023 EST
Como criar, treinar e implantar modelos de ML com o Keras no Google Cloud Earned Dec 28, 2023 EST
Launching into Machine Learning - Português Brasileiro Earned Dec 24, 2023 EST
Introdução à IA e ao machine learning no Google Cloud Earned Dec 20, 2023 EST

This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.

Saiba mais

This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.

Saiba mais

Neste curso, vamos conhecer os componentes e as práticas recomendadas para criar sistemas de ML com alto desempenho em ambientes de produção. Vamos abordar algumas considerações comuns relacionadas à criação desses sistemas, como treinamento estático e dinâmico, inferência estática e dinâmica, TensorFlow distribuído e TPUs. O objetivo deste curso é conhecer as características de um sistema de ML eficiente, que vão muito além da capacidade de fazer boas previsões.

Saiba mais

Este curso tem uma abordagem realista para o fluxo de trabalho de ML usando um estudo de caso em que uma equipe tem vários casos de uso e exigências comerciais em ML. Essa equipe precisa conhecer as ferramentas necessárias para a governança e o gerenciamento de dados e decidir a melhor abordagem para o processamento deles. A equipe terá três opções para criar modelos de ML em dois casos de uso. Neste curso, explicamos quando usar o AutoML, o BigQuery ML ou o treinamento personalizado para alcançar os objetivos.

Saiba mais

O curso apresenta os benefícios de usar a Vertex AI Feature Store e ensina a melhorar a acurácia dos modelos de ML e a identificar as colunas de dados que apresentam os atributos mais úteis. Ele também oferece conteúdo teórico e laboratórios sobre engenharia de atributos com BigQuery ML, Keras e TensorFlow.

Saiba mais

Este curso ensina a criar modelos de ML com o TensorFlow e o Keras, melhorar a acurácia deles e desenvolver modelos para uso em escala.

Saiba mais

O curso começa com a seguinte discussão: como melhorar a qualidade dos dados e fazer uma análise exploratória deles? Descrevemos o AutoML na Vertex AI e como criar, treinar e implantar um modelo de ML sem escrever nenhuma linha de código. Você vai conhecer os benefícios do BigQuery ML. Depois vamos falar sobre como otimizar um modelo de machine learning (ML) e como a generalização e a amostragem podem ajudar na avaliação de qualidade dos modelos de ML em treinamentos personalizados.

Saiba mais

Neste curso, apresentamos os recursos de IA e machine learning (ML) no Google Cloud que criam projetos de IA generativa e preditiva. Vamos conhecer as tecnologias, os produtos e as ferramentas disponíveis em todo o ciclo de vida de dados à IA, o que inclui os fundamentos dessa tecnologia, o desenvolvimento e as soluções dela. O objetivo é ajudar cientistas de dados, desenvolvedores de IA e engenheiros de ML a aprimorar habilidades e o conhecimento com experiências de aprendizado envolventes e exercícios práticos.

Saiba mais