Unirse Acceder

Aplica tus habilidades en la consola de Google Cloud

ali hadjikhani

Miembro desde 2024

Liga de Bronce

58275 puntos
Aspectos básicos de la computación en Google Cloud: Redes y seguridad en Google Cloud Earned dic 12, 2024 EST
Aspectos básicos de la computación en Google Cloud: Datos, IA y AA en Google Cloud Earned abr 17, 2024 EDT
Aspectos básicos de la computación en Google Cloud: Infraestructura en Google Cloud Earned abr 15, 2024 EDT
Aspectos básicos de la computación en Google Cloud: Fundamentos de la computación en la nube Earned abr 12, 2024 EDT
Procesamiento de datos sin servidores con Dataflow: Fundamentos Earned abr 11, 2024 EDT
Smart Analytics, Machine Learning, and AI on Google Cloud - Español Earned abr 10, 2024 EDT
Creación de flujos de procesamiento de datos por lotes en Google Cloud Earned abr 9, 2024 EDT
Modernización de data lakes y almacenes de datos con Google Cloud Earned abr 6, 2024 EDT
Google Cloud Big Data and Machine Learning Fundamentals - Español Earned abr 4, 2024 EDT
Preparación para el proceso de certificación Professional Data Engineer Earned abr 3, 2024 EDT
Natural Language Processing on Google Cloud Earned mar 31, 2024 EDT
Computer Vision Fundamentals with Google Cloud Earned mar 27, 2024 EDT
Sistemas de aprendizaje automático de producción Earned mar 13, 2024 EDT
Introducción a Google Kubernetes Engine Earned mar 6, 2024 EST
Aprendizaje automático en empresas Earned mar 2, 2024 EST
Ingeniería de atributos Earned feb 28, 2024 EST
Crea, entrena e implementa modelos de AA con Keras en Google Cloud Earned feb 26, 2024 EST
Introducción a Vertex AI Studio Earned feb 13, 2024 EST
Creación de modelos de generación de subtítulos de imágenes Earned feb 13, 2024 EST
Modelos de transformadores y modelo BERT Earned feb 13, 2024 EST
Arquitectura de codificador-decodificador Earned feb 13, 2024 EST
Mecanismo de atención Earned feb 13, 2024 EST
Introducción a la generación de imágenes Earned feb 13, 2024 EST
Explorador de IA generativa - Vertex AI Earned feb 12, 2024 EST
Operaciones de aprendizaje automático (MLOps): Primeros pasos Earned feb 10, 2024 EST
Operaciones de aprendizaje automático (MLOps) para la IA generativa Earned feb 9, 2024 EST
Launching into Machine Learning - Español Earned ene 29, 2024 EST
Introducción a la IA y el aprendizaje automático en Google Cloud Earned ene 24, 2024 EST
Gemini en Google Meet Earned ene 18, 2024 EST
Gemini en Hojas de cálculo de Google Earned ene 18, 2024 EST
Gemini en Presentaciones de Google Earned ene 18, 2024 EST
Gemini en Documentos de Google Earned ene 18, 2024 EST
Gemini en Gmail Earned ene 18, 2024 EST
Introducción a Gemini para Google Workspace Earned ene 18, 2024 EST
IA responsable: Aplica los principios de la IA con Google Cloud Earned ene 18, 2024 EST
Generative AI Fundamentals - Español Earned ene 17, 2024 EST
Introducción a la IA responsable Earned ene 17, 2024 EST
Introducción a los modelos de lenguaje grandes Earned ene 17, 2024 EST
Introducción a la IA generativa Earned ene 17, 2024 EST

Los cursos de Google Cloud Computing Foundations están destinados a personas que tienen un poco o nada de noción previa o experiencia sobre computación en la nube. Brindan una descripción general de los conceptos centrales básicos de la nube, los macrodatos y el aprendizaje automático, y explican dónde y cómo resulta adecuado utilizar Google Cloud. Cuando finalicen la serie de cursos, los alumnos podrán hablar con claridad sobre estos conceptos y demostrar sus habilidades prácticas. Los cursos deben completarse en el siguiente orden: 1. Aspectos básicos de la computación en Google Cloud: Fundamentos de la computación en la nube 2. Aspectos básicos de la computación en Google Cloud: Infraestructura en Google Cloud 3. Aspectos básicos de la computación en Google Cloud: Redes y seguridad en Google Cloud 4. Aspectos básicos de la computación en Google Cloud: Datos, IA y AA en Google Cloud Este tercer curso aborda la automatización y las herramientas de administración de la nube…

Más información

Los cursos de Google Cloud Computing Foundations están destinados a personas que tienen un poco o nada de noción previa o experiencia sobre computación en la nube. Brindan una descripción general de los conceptos centrales básicos de la nube, los macrodatos y el aprendizaje automático, y explican dónde y cómo resulta adecuado utilizar Google Cloud. Cuando finalicen la serie de cursos, los alumnos podrán hablar con claridad sobre estos conceptos y demostrar sus habilidades prácticas. Los cursos deben completarse en el siguiente orden: 1. Aspectos básicos de la computación en Google Cloud: Fundamentos de la computación en la nube 2. Aspectos básicos de la computación en Google Cloud: Infraestructura en Google Cloud 3. Aspectos básicos de la computación en Google Cloud: Redes y seguridad en Google Cloud 4. Aspectos básicos de la computación en Google Cloud: Datos, IA y AA en Google Cloud En el curso final de la serie, se estudian los servicios de macrodatos administrados, el aprendiza…

Más información

Los cursos de Google Cloud Computing Foundations están destinados a personas que tienen un poco o nada de noción previa o experiencia sobre computación en la nube. Brindan una descripción general de los conceptos centrales básicos de la nube, los macrodatos y el aprendizaje automático, y explican dónde y cómo resulta adecuado utilizar Google Cloud. Cuando finalicen la serie de cursos, los estudiantes podrán hablar con claridad sobre estos conceptos y demostrar sus habilidades prácticas. Los cursos deben completarse en el siguiente orden: 1. Aspectos básicos de la computación en Google Cloud: Fundamentos de la computación en la nube 2. Aspectos básicos de la computación en Google Cloud: Infraestructura en Google Cloud 3. Aspectos básicos de la computación en Google Cloud: Redes y seguridad en Google Cloud 4. Aspectos básicos de la computación en Google Cloud: Datos, IA y AA en Google Cloud

Más información

Los cursos de Google Cloud Computing Foundations están destinados a personas que tienen un poco o nada de noción previa o experiencia sobre computación en la nube. Brindan una descripción general de los conceptos centrales básicos de la nube, los macrodatos y el aprendizaje automático, y explican dónde y cómo resulta adecuado utilizar Google Cloud. Cuando finalicen la serie de cursos, los alumnos podrán hablar con claridad sobre estos conceptos y demostrar sus habilidades prácticas. Los cursos deben completarse en el siguiente orden: 1. Aspectos básicos de la computación en Google Cloud: Fundamentos de la computación en la nube 2. Aspectos básicos de la computación en Google Cloud: Infraestructura en Google Cloud 3. Aspectos básicos de la computación en Google Cloud: Redes y seguridad en Google Cloud 4. Aspectos básicos de la computación en Google Cloud: Datos, IA y AA en Google Cloud Este primer curso brinda una descripción general de la computación en la nube, formas de usar Googl…

Más información

Este curso corresponde a la 1ª parte de una serie de 3 cursos llamada Procesamiento de datos sin servidores con Dataflow. Para comenzar, en el primer curso haremos un repaso de qué es Apache Beam y cómo se relaciona con Dataflow. Luego, hablaremos sobre la visión de Apache Beam y los beneficios que ofrece su framework de portabilidad. Dicho framework hace posible que un desarrollador pueda usar su lenguaje de programación favorito con su backend de ejecución preferido. Después, le mostraremos cómo Dataflow le permite separar el procesamiento y el almacenamiento y, a la vez, ahorrar dinero. También le explicaremos cómo las herramientas de identidad, acceso y administración interactúan con sus canalizaciones de Dataflow. Por último, veremos cómo implementar el modelo de seguridad adecuado en Dataflow según su caso de uso.

Más información

La incorporación del aprendizaje automático en las canalizaciones de datos aumenta la capacidad para extraer estadísticas de los datos. En este curso, veremos formas de incluir el aprendizaje automático en las canalizaciones de datos en Google Cloud. Para una personalización escasa o nula, en el curso se aborda AutoML. Para obtener más capacidades de aprendizaje automático a medida, el curso presenta Notebooks y BigQuery Machine Learning (BigQuery ML). Además, en este curso se aborda cómo llevar a producción soluciones de aprendizaje automático con Vertex AI.

Más información

Las canalizaciones de datos suelen realizarse según uno de los paradigmas extracción y carga (EL); extracción, carga y transformación (ELT), o extracción, transformación y carga (ETL). En este curso, abordaremos qué paradigma se debe utilizar para los datos por lotes y cuándo corresponde usarlo. Además, veremos varias tecnologías de Google Cloud para la transformación de datos, incluidos BigQuery, la ejecución de Spark en Dataproc, grafos de canalización en Cloud Data Fusion y procesamiento de datos sin servidores en Dataflow. Los estudiantes obtienen experiencia práctica en la compilación de componentes de canalizaciones de datos en Google Cloud con Qwiklabs.

Más información

Los dos componentes clave de cualquier canalización de datos son los data lakes y los almacenes de datos. En este curso, se destacan los casos de uso de cada tipo de almacenamiento y se analizan en profundidad las soluciones de data lakes y almacenes disponibles en Google Cloud con detalles técnicos. Además, en este curso, se describen el rol del ingeniero en datos, los beneficios de las canalizaciones de datos exitosas para las operaciones comerciales y por qué la ingeniería de datos debe realizarse en un entorno de nube. Este el primer curso de la serie Ingeniería de datos en Google Cloud. Después de completar este curso, inscríbete en el curso Creación de flujos de procesamiento de datos por lotes en Google Cloud.

Más información

En este curso, aprenderás sobre los productos y servicios de macrodatos y aprendizaje automático de Google Cloud involucrados en el ciclo de vida de datos a IA. También explorarás los procesos, los desafíos y los beneficios de crear una canalización de macrodatos y modelos de aprendizaje automático con Vertex AI en Google Cloud.

Más información

Este curso ayuda a los participantes a crear un plan de estudio para el examen de certificación de PDE (Professional Data Engineer). Los alumnos conocerán la amplitud y el alcance de los dominios que se incluyen en el examen. Además, evaluarán su nivel de preparación para el examen y crearán un plan de estudio personal.

Más información

This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.

Más información

This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.

Más información

En este curso, analizaremos los componentes y las prácticas recomendadas de la creación de sistemas de AA de alto rendimiento en entornos de producción. Veremos algunas de las consideraciones más comunes tras la creación de estos sistemas, p. ej., entrenamiento estático, entrenamiento dinámico, inferencia estática, inferencia dinámica, TensorFlow distribuido y TPU. Este curso se enfoca en explorar las características que conforman un buen sistema de AA más allá de su capacidad de realizar predicciones correctas.

Más información

Te damos la bienvenida al curso Introducción a Google Kubernetes Engine. Si te interesa Kubernetes, una capa de software ubicada entre tus aplicaciones y la infraestructura de tu hardware, estás en el lugar correcto. Google Kubernetes Engine te ofrece Kubernetes como un servicio administrado en Google Cloud. El objetivo de este curso es presentar los conceptos básicos de Google Kubernetes Engine o GKE, como se conoce comúnmente, y cómo alojar aplicaciones en contenedores y ejecutarlas en Google Cloud. El curso comienza con una introducción básica a Google Cloud, seguida de una descripción general de los contenedores y Kubernetes, la arquitectura de Kubernetes y las operaciones de esta plataforma.

Más información

En este curso, se aplica un enfoque real en el flujo de trabajo del AA a través de un caso de éxito. Un equipo de AA trabaja con varios requisitos empresariales y casos de uso de AA. El equipo debe comprender las herramientas necesarias para la administración de los datos y considerar el mejor enfoque para su procesamiento previo. Al equipo se le presentan tres opciones con las que puede crear modelos de AA para dos casos de uso. En el curso, se explica por qué el equipo usará AutoML, BigQuery ML o entrenamiento personalizado para lograr sus objetivos.

Más información

En este curso, se exploran los beneficios de utilizar Vertex AI Feature Store, cómo mejorar la exactitud de los modelos de AA y cómo descubrir cuáles columnas de datos producen los atributos más útiles. El curso también incluye contenido y labs sobre la ingeniería de atributos en los que se usan BigQuery ML, Keras y TensorFlow.

Más información

En este curso, se explica cómo crear modelos de AA con TensorFlow y Keras, cómo mejorar la exactitud de los modelos de AA y cómo escribir modelos de AA para uso escalado.

Más información

En este curso, se presenta Vertex AI Studio, una herramienta para interactuar con modelos de IA generativa, crear prototipos de ideas de negocio y llevarlas a producción. A través de un caso de uso envolvente, lecciones atractivas y un lab práctico, explorarás el ciclo de vida desde la instrucción hasta el producto y aprenderás cómo aprovechar Vertex AI Studio para aplicaciones multimodales de Gemini, diseño de instrucciones, ingeniería de instrucciones y ajuste de modelos. El objetivo es permitirte desbloquear el potencial de la IA generativa en tus proyectos con Vertex AI Studio.

Más información

En este curso, se te enseña a crear un modelo de generación de leyendas de imágenes con el aprendizaje profundo. Aprenderás sobre los distintos componentes de los modelos de generación de leyendas de imágenes, como el codificador y el decodificador, y cómo entrenar y evaluar tu modelo. Al final del curso, podrás crear tus propios modelos y usarlos para generar leyendas de imágenes.

Más información

En este curso, se presentan la arquitectura de transformadores y el modelo de Bidirectional Encoder Representations from Transformers (BERT). Aprenderás sobre los componentes principales de la arquitectura de transformadores, como el mecanismo de autoatención, y cómo se usa para crear el modelo BERT. También aprenderás sobre las diferentes tareas para las que puede usarse BERT, como la clasificación de texto, la respuesta de preguntas y la inferencia de lenguaje natural. Tardarás aproximadamente 45 minutos en completar este curso.

Más información

En este curso, se brinda un resumen de la arquitectura de codificador-decodificador, una arquitectura de aprendizaje automático importante y potente para realizar tareas de secuencia por secuencia, como las de traducción automática, resúmenes de texto y respuestas a preguntas. Aprenderás sobre los componentes principales de la arquitectura de codificador-decodificador y cómo entrenar y entregar estos modelos. En la explicación del lab, programarás una implementación sencilla de la arquitectura de codificador-decodificador en TensorFlow para generar poemas desde un comienzo.

Más información

Este curso es una introducción al mecanismo de atención, una potente técnica que permite a las redes neuronales enfocarse en partes específicas de una secuencia de entrada. Sabrás cómo funciona la atención y cómo puede utilizarse para mejorar el rendimiento de diversas tareas de aprendizaje automático, como la traducción automática, el resumen de textos y la respuesta a preguntas.

Más información

En este curso, se presenta una introducción a los modelos de difusión: una familia de modelos de aprendizaje automático que demostraron ser muy prometedores en el área de la generación de imágenes. Los modelos de difusión se inspiran en la física, específicamente, en la termodinámica. En los últimos años, los modelos de difusión se han vuelto populares tanto en investigaciones como en la industria. Los modelos de difusión respaldan muchos de los modelos de generación de imágenes y herramientas vanguardistas de Google Cloud. En este curso, se presenta la teoría detrás de los modelos de difusión y cómo entrenarlos y, luego, implementarlos en Vertex AI.

Más información

El curso Explorador de IA generativa - Vertex AI es una colección de labs sobre cómo usar la IA generativa en Google Cloud. A través de los labs, aprenderás sobre cómo usar los modelos de la familia de APIs de PaLM de Vertex AI, incluidos text-bison, chat-bison y textembedding-gecko. También aprenderás sobre el diseño de instrucciones, las prácticas recomendadas y cómo se puede usar para la ideación, la clasificación, la extracción y el resumen de texto, y mucho más. También aprenderás a ajustar un modelo de base mediante el entrenamiento personalizado de Vertex AI y, luego, implementarlo en un extremo de Vertex AI.

Más información

En este curso, se presentan a los participantes las herramientas y prácticas recomendadas de MLOps para implementar, evaluar, supervisar y operar sistemas de AA de producción en Google Cloud. Las MLOps son una disciplina enfocada en la implementación, prueba, supervisión y automatización de sistemas de AA en producción. Los ingenieros profesionales de aprendizaje automático usan herramientas para mejorar y evaluar continuamente los modelos implementados. Trabajan con científicos de datos (o pueden serlo) que desarrollan modelos para ofrecer velocidad y rigor en la implementación de modelos con el mejor rendimiento.

Más información

El objetivo de este curso es equiparte con los conocimientos y las herramientas que necesitas para descubrir los desafíos únicos que enfrentan los equipos de MLOps cuando implementan y administran modelos de IA generativa, y explorar cómo Vertex AI fortalece a los equipos de IA para optimizar los procesos de MLOps y alcanzar el éxito en los proyectos de IA generativa.

Más información

El curso comienza con un debate sobre los datos: cómo mejorar su calidad y cómo realizar análisis exploratorios de ellos. Describimos Vertex AI AutoML y cómo crear, entrenar e implementar un modelo de AA sin escribir una sola línea de código. Conocerás los beneficios de BigQuery ML. Luego, se analiza cómo optimizar un modelo de aprendizaje automático (AA) y cómo la generalización y el muestreo pueden ayudar a evaluar la calidad de los modelos de AA para el entrenamiento personalizado.

Más información

En este curso, se presentan las ofertas de aprendizaje automático (AA) en Google Cloud que compilan proyectos de IA predictiva y generativa. También se exploran las tecnologías, los productos y las herramientas disponibles durante el ciclo de vida desde los datos hasta la IA, que engloban los fundamentos, el desarrollo y las soluciones de IA. El objetivo es ayudar a científicos de datos, ingenieros de AA y desarrolladores de IA a mejorar sus habilidades y conocimientos a través de experiencias de aprendizaje atractivas y ejercicios prácticos.

Más información

Gemini para Google Workspace es un complemento que les proporciona a los usuarios acceso a funciones potenciadas por IA generativa. En este curso, se profundiza en las capacidades de Gemini en Google Meet. A través de lecciones en video y actividades y ejemplos prácticos, comprenderás de manera integral las funciones de Gemini en Google Meet. Aprenderás a usar Gemini para generar imágenes de fondo, mejorar la calidad de tus videos y presentar subtítulos traducidos. Al final de este curso, contarás con los conocimientos y las habilidades necesarios para utilizar Gemini en Google Meet con confianza para maximizar la eficacia de tus videoconferencias.

Más información

Gemini para Google Workspace es un complemento que les proporciona a los clientes funciones potenciadas por IA generativa en esta plataforma. En este minicurso, aprenderás sobre las funciones clave de Gemini y cómo se pueden usar para mejorar la productividad y eficiencia en Hojas de cálculo de Google.

Más información

Gemini para Google Workspace es un complemento que les proporciona a los clientes funciones potenciadas por IA generativa en esta plataforma. En este minicurso, aprenderás sobre las funciones clave de Gemini y cómo se pueden usar para mejorar la productividad y eficiencia en Presentaciones de Google.

Más información

Gemini para Google Workspace es un complemento que les proporciona a los usuarios acceso a funciones potenciadas por IA generativa. En este curso, se profundiza en las capacidades de Gemini en Documentos de Google a través de lecciones en video y actividades y ejemplos prácticos. Descubre cómo usar Gemini para generar contenido escrito basado en instrucciones. También explorarás el uso de Gemini para editar el texto que ya escribiste, lo que te ayudará a mejorar tu productividad general. Al final del curso, contarás con los conocimientos y las habilidades necesarios para usar Gemini en Documentos de Google con confianza y mejorar tu escritura.

Más información

Gemini para Google Workspace es un complemento que les proporciona a los clientes funciones potenciadas por IA generativa en esta plataforma. En este minicurso, aprenderás sobre las funciones clave de Gemini y cómo se pueden usar para mejorar la productividad y eficiencia en Gmail.

Más información

Gemini para Google Workspace es un complemento que les proporciona a los clientes funciones potenciadas por IA generativa en esta plataforma. En esta ruta de aprendizaje, aprenderás sobre las funciones clave de Gemini y cómo se pueden usar para mejorar la productividad y eficiencia en Google Workspace.

Más información

A medida que aumenta el uso empresarial de la inteligencia artificial y el aprendizaje automático, también crece la importancia de implementarlo responsablemente. El desafío para muchas personas es que hablar sobre la IA responsable puede ser más fácil que aplicarla. Si te interesa aprender cómo poner en funcionamiento la IA responsable en tu organización, este curso es para ti. En este curso, aprenderás cómo Google Cloud aplica estos principios en la actualidad, junto con las prácticas recomendadas y las lecciones aprendidas, para usarlos como marco de trabajo de modo que puedas crear tu propio enfoque de IA responsable.

Más información

Completa los cursos Introduction to Generative AI, Introduction to Large Language Models e Introduction to Responsible AI para obtener una insignia de habilidad. Aprueba el cuestionario final para demostrar que entiendes los conceptos básicos sobre la IA generativa. Una insignia de habilidad es una insignia digital que emite Google Cloud en reconocimiento de tu dominio de los productos y servicios de la plataforma. Para compartir tu insignia de habilidad, establece tu perfil como público y agrega la insignia a tu perfil de redes sociales.

Más información

Este es un curso introductorio de microaprendizaje destinado a explicar qué es la IA responsable, por qué es importante y cómo la implementa Google en sus productos. También se presentan los 7 principios de la IA de Google.

Más información

Este es un curso introductorio de microaprendizaje en el que se explora qué son los modelos de lenguaje grandes (LLM), sus casos de uso y cómo se puede utilizar el ajuste de instrucciones para mejorar el rendimiento de los LLM. También abarca las herramientas de Google para ayudarte a desarrollar tus propias aplicaciones de IA generativa.

Más información

Este es un curso introductorio de microaprendizaje destinado a explicar qué es la IA generativa, cómo se utiliza y en qué se diferencia de los métodos de aprendizaje automático tradicionales. También abarca las herramientas de Google para ayudarte a desarrollar tus propias aplicaciones de IA generativa.

Más información