Paul M Summitt
成为会员时间:2020
钻石联赛
17835 积分
成为会员时间:2020
This course introduces the Cloud Run serverless platform for running applications. In this course, you learn about the fundamentals of Cloud Run, its resource model and the container lifecycle. You learn about service identities, how to control access to services, and how to develop and test your application locally before deploying it to Cloud Run. The course also teaches you how to integrate with other services on Google Cloud so you can build full-featured applications.
In this course, application developers learn how to design and develop cloud-native applications that seamlessly integrate components from the Google Cloud ecosystem. Through a combination of presentations, demos, and hands-on labs, participants learn how to create repeatable deployments by treating infrastructure as code, choose the appropriate application execution environment for an application, and monitor application performance. Completing one version of each lab is required. Each lab is available in Node.js. In most cases, the same labs are also provided in Python or Java. You may complete each lab in whichever language you prefer.
In this course, application developers learn how to design and develop cloud-native applications that seamlessly integrate managed services from Google Cloud. Through a combination of presentations, demos, and hands-on labs, participants learn how to develop more secure applications, implement federated identity management, and integrate application components by using messaging, event-driven processing, and API gateways. Completing one version of each lab is required. Each lab is available in Node.js. In most cases, the same labs are also provided in Python or Java. You may complete each lab in whichever language you prefer. This is the second course of the Developing Applications with Google Cloud series. After completing this course, enroll in the App Deployment, Debugging, and Performance course.
In this course, application developers learn how to design and develop cloud-native applications that seamlessly integrate managed services from Google Cloud. Through a combination of presentations, demos, and hands-on labs, participants learn how to apply best practices for application development and use the appropriate Google Cloud storage services for object storage, relational data, caching, and analytics. Completing one version of each lab is required. Each lab is available in Node.js. In most cases, the same labs are also provided in Python or Java. You may complete each lab in whichever language you prefer. This is the first course of the Developing Applications with Google Cloud series. After completing this course, enroll in the Securing and Integrating Components of your Application course.
本课程介绍 Vertex AI Studio,这是一种用于与生成式 AI 模型交互、围绕业务创意进行原型设计并在生产环境中落地的工具。通过沉浸式应用场景、富有吸引力的课程和实操实验,您将探索从提示到产品的整个生命周期,了解如何将 Vertex AI Studio 用于多模态 Gemini 应用、提示设计、提示工程和模型调优。本课程的目的在于帮助您利用 Vertex AI Studio,在自己的项目中充分发掘生成式 AI 的潜力。
本课程教您如何使用深度学习来创建图片标注模型。您将了解图片标注模型的不同组成部分,例如编码器和解码器,以及如何训练和评估模型。学完本课程,您将能够自行创建图片标注模型并用来生成图片说明。
本课程向您介绍 Transformer 架构和 Bidirectional Encoder Representations from Transformers (BERT) 模型。您将了解 Transformer 架构的主要组成部分,例如自注意力机制,以及该架构如何用于构建 BERT 模型。您还将了解可以使用 BERT 的不同任务,例如文本分类、问答和自然语言推理。完成本课程估计需要大约 45 分钟。
本课程将向您介绍注意力机制,这是一种强大的技术,可令神经网络专注于输入序列的特定部分。您将了解注意力的工作原理,以及如何使用它来提高各种机器学习任务的性能,包括机器翻译、文本摘要和问题解答。
本课程简要介绍了编码器-解码器架构,这是一种功能强大且常见的机器学习架构,适用于机器翻译、文本摘要和问答等 sequence-to-sequence 任务。您将了解编码器-解码器架构的主要组成部分,以及如何训练和部署这些模型。在相应的实验演示中,您将在 TensorFlow 中从头编写简单的编码器-解码器架构实现代码,以用于诗歌生成。
本课程向您介绍扩散模型。这类机器学习模型最近在图像生成领域展现出了巨大潜力。扩散模型的灵感来源于物理学,特别是热力学。过去几年内,扩散模型成为热门研究主题并在整个行业开始流行。Google Cloud 上许多先进的图像生成模型和工具都是以扩散模型为基础构建的。本课程向您介绍扩散模型背后的理论,以及如何在 Vertex AI 上训练和部署此类模型。
This course helps you structure your preparation for the Professional Cloud Engineer exam. You will learn about the Google Cloud domains covered by the exam and how to create a study plan to improve your domain knowledge.
完成 Introduction to Generative AI、Introduction to Large Language Models 和 Introduction to Responsible AI 三门课程,赢取技能徽章。通过最终测验,即表明您理解了生成式 AI 的基本概念。 技能徽章是由 Google Cloud 颁发的数字徽章,旨在认可您对 Google Cloud 产品与服务的了解程度。公开您的个人资料并将技能徽章添加到您的社交媒体个人资料中,以此来分享您获得的成就。
这是一节入门级微课程,旨在解释什么是负责任的 AI、它的重要性,以及 Google 如何在自己的产品中实现负责任的 AI。此外,本课程还介绍了 Google 的 7 个 AI 开发原则。
这是一节入门级微学习课程,探讨什么是大型语言模型 (LLM)、适合的应用场景以及如何使用提示调整来提升 LLM 性能,还介绍了可以帮助您开发自己的 Gen AI 应用的各种 Google 工具。
This course provides an introduction to using Terraform for Google Cloud. It enables learners to describe how Terraform can be used to implement infrastructure as code and to apply some of its key features and functionalities to create and manage Google Cloud infrastructure. Learners will get hands-on practice building and managing Google Cloud resources using Terraform.
This course helps you structure your preparation for the Associate Cloud Engineer exam. You will learn about the Google Cloud domains covered by the exam and how to create a study plan to improve your domain knowledge.
这是一节入门级微课程,旨在解释什么是生成式 AI、它的用途以及与传统机器学习方法的区别。该课程还介绍了可以帮助您开发自己的生成式 AI 应用的各种 Google 工具。
In this course, we define what machine learning is and how it can benefit your business. You'll see a few demos of ML in action and learn key ML terms like instances, features, and labels. In the interactive labs, you will practice invoking the pretrained ML APIs available as well as build your own Machine Learning models using just SQL with BigQuery ML.
完成中级技能徽章课程“优化 Google Kubernetes Engine 的费用”, 展示您在以下方面的技能:创建和管理多租户集群、按命名空间监控资源使用情况、 配置集群和 Pod 自动扩缩以提高效率、设置负载均衡以实现最佳资源分布, 以及实现活跃性与就绪性探测以确保应用正常运行并具有成本效益。 技能徽章是由 Google Cloud 颁发的专属数字徽章, 证明您在特定 Google Cloud 产品与服务方面的熟练程度;您需要在 交互式实操环境中参加考核,证明自己运用所学知识的能力后才能获得此徽章。完成此技能 徽章课程和作为最终评估的实验室挑战赛,即可获得技能徽章, 在您的人际圈中炫出自己的技能。
完成开发 Google Cloud 网络课程,赢取技能徽章。在此课程中,您将学习 部署和监控应用的多种方法,包括执行以下任务的方法:探索 IAM 角色并添加/移除 项目访问权限、创建 VPC 网络、部署和监控 Compute Engine 虚拟机、 编写 SQL 查询、在 Compute Engine 中部署和监控虚拟机,以及使用 Kubernetes 通过多种部署方法部署应用。
完成在 Google Cloud 上使用 Terraform 构建基础设施技能徽章中级课程, 展示您在以下方面的技能:在使用 Terraform 时遵循基础设施即代码 (IaC) 原则;利用 Terraform 配置 来预配和管理 Google Cloud 资源;管理有效状态(本地和远程);以及将 Terraform 代码模块化,以方便重复使用和整理。
This course explores what ML is and what problems it can solve. The course also discusses best practices for implementing machine learning. You’re introduced to Vertex AI, a unified platform to quickly build, train, and deploy AutoML machine learning models. The course discusses the five phases of converting a candidate use case to be driven by machine learning, and why it’s important to not skip them. The course ends with recognizing the biases that ML can amplify and how to recognize them.
The third course in this course series is Achieving Advanced Insights with BigQuery. Here we will build on your growing knowledge of SQL as we dive into advanced functions and how to break apart a complex query into manageable steps. We will cover the internal architecture of BigQuery (column-based sharded storage) and advanced SQL topics like nested and repeated fields through the use of Arrays and Structs. Lastly we will dive into optimizing your queries for performance and how you can secure your data through authorized views. After completing this course, enroll in the Applying Machine Learning to your Data with Google Cloud course.
Incorporating machine learning into data pipelines increases the ability to extract insights from data. This course covers ways machine learning can be included in data pipelines on Google Cloud. For little to no customization, this course covers AutoML. For more tailored machine learning capabilities, this course introduces Notebooks and BigQuery machine learning (BigQuery ML). Also, this course covers how to productionalize machine learning solutions by using Vertex AI.
In this course you will get hands-on in order to work through real-world challenges faced when building streaming data pipelines. The primary focus is on managing continuous, unbounded data with Google Cloud products.
This is the second course in the Data to Insights course series. Here we will cover how to ingest new external datasets into BigQuery and visualize them with Looker Studio. We will also cover intermediate SQL concepts like multi-table JOINs and UNIONs which will allow you to analyze data across multiple data sources. Note: Even if you have a background in SQL, there are BigQuery specifics (like handling query cache and table wildcards) that may be new to you. After completing this course, enroll in the Achieving Advanced Insights with BigQuery course.
This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.
欢迎学习“Google Kubernetes Engine 使用入门”课程。Kubernetes 是位于应用和硬件基础架构之间的软件层,如果您对 Kubernetes 感兴趣,那就来对地方了!Google Kubernetes Engine 将 Kubernetes 作为 Google Cloud 上的代管式服务提供给您使用。 本课程的目标是介绍 Google Kubernetes Engine(通常称为 GKE)的基础知识,以及将应用容器化并在 Google Cloud 中运行的方法。本课程首先介绍 Google Cloud 的基础知识,然后概述容器、Kubernetes、Kubernetes 架构以及 Kubernetes 操作。
本课程指导学员运用久经考验的设计模式在 Google Cloud 上构建高度可靠且高效的解决方案。它是“Google Compute Engine 架构设计”或“Google Kubernetes Engine 架构设计”课程的延续,并假定您有使用其中任何一门课程所涵盖技术的实践经验。通过一系列演示、设计活动和动手实验,学员可以了解如何定义及平衡业务要求和技术要求,以便设计可靠性和可用性高、安全且经济实惠的 Google Cloud 部署。
This course teaches participants techniques for monitoring and improving infrastructure and application performance in Google Cloud. Using a combination of presentations, demos, hands-on labs, and real-world case studies, attendees gain experience with full-stack monitoring, real-time log management and analysis, debugging code in production, tracing application performance bottlenecks, and profiling CPU and memory usage.
This course helps learners create a study plan for the PCA (Professional Cloud Architect) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.
In this intermediate course, you will learn to design, build, and optimize robust batch data pipelines on Google Cloud. Moving beyond fundamental data handling, you will explore large-scale data transformations and efficient workflow orchestration, essential for timely business intelligence and critical reporting. Get hands-on practice using Dataflow for Apache Beam and Serverless for Apache Spark (Dataproc Serverless) for implementation, and tackle crucial considerations for data quality, monitoring, and alerting to ensure pipeline reliability and operational excellence. A basic knowledge of data warehousing, ETL/ELT, SQL, Python, and Google Cloud concepts is recommended.
Big data, machine learning, and scientific data? It sounds like the perfect match. In this advanced-level quest, you will get hands-on practice with GCP services like Big Query, Dataproc, and Tensorflow by applying them to use cases that employ real-life, scientific data sets. By getting experience with tasks like earthquake data analysis and satellite image aggregation, Scientific Data Processing will expand your skill set in big data and machine learning so you can start tackling your own problems across a spectrum of scientific disciplines.
“Google Cloud 基础知识:核心基础设施”介绍在使用 Google Cloud 时会遇到的重要概念和术语。本课程通过视频和实操实验来介绍并比较 Google Cloud 的多种计算和存储服务,并提供重要的资源和政策管理工具。
In this course, we see what the common challenges faced by data analysts are and how to solve them with the big data tools on Google Cloud. You’ll pick up some SQL along the way and become very familiar with using BigQuery and Dataprep to analyze and transform your datasets. This is the first course of the From Data to Insights with Google Cloud series. After completing this course, enroll in the Creating New BigQuery Datasets and Visualizing Insights course.
While the traditional approaches of using data lakes and data warehouses can be effective, they have shortcomings, particularly in large enterprise environments. This course introduces the concept of a data lakehouse and the Google Cloud products used to create one. A lakehouse architecture uses open-standard data sources and combines the best features of data lakes and data warehouses, which addresses many of their shortcomings.
完成中级技能徽章课程使用 BigQuery 构建数据仓库,展示以下技能: 联接数据以创建新表、排查联接故障、使用并集附加数据、创建日期分区表, 以及在 BigQuery 中使用 JSON、数组和结构体。 技能徽章是 Google Cloud 颁发的专属数字徽章, 旨在认可您在 Google Cloud 产品与服务方面的熟练度; 您需要在交互式实操环境中参加考核,证明自己运用所学知识的能力后 才能获得。完成此技能徽章课程和作为最终评估的实验室挑战赛, 获得数字徽章,在您的人际圈中炫出自己的技能。
This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.
大数据、机器学习和人工智能是当今计算领域的热门话题, 但这些领域的专业性很强,因而很难找到 入门资料。幸运的是,Google Cloud 在这些领域提供了方便用户使用的服务, 通过本入门级课程,您可以 开始学习使用 BigQuery、Cloud Speech API 和 Video Intelligence 等工具。
This course builds on some of the concepts covered in the earlier Google Sheets course. In this course, you will learn how to apply and customize themes In Google Sheets, and explore conditional formatting options. You will learn about some of Google Sheets’ advanced formulas and functions. You will explore how to create formulas using functions, and you will also learn how to reference and validate your data in a Google Sheet. Spreadsheets can hold millions of numbers, formulas, and text. Making sense of all of that data can be difficult without a summary or visualization. This course explores the data visualization options in Google Sheets, such as charts and pivot tables. Google Forms are online surveys used to collect data and provide the opportunity for quick data analysis. You will explore how Forms and Sheets work together by connecting collected Form data to a spreadsheet, or by creating a Form from an existing spreadsheet.
Welcome to "CCAI Conversational Design Fundamentals", the first course in the "Customer Experiences with Contact Center AI" series. In this course, learn how to design customer conversational solutions using Contact Center Artificial Intelligence (CCAI). You will be introduced to CCAI and its three pillars (Dialogflow, Agent Assist, and Insights), and the concepts behind conversational experiences and how the study of them influences the design of your virtual agent. After taking this course you will be prepared to take your virtual agent design to the next level of intelligent conversation.
In this course, we introduce you to Google Meet, Google’s video conference software included with Google Workspace. You learn how to create and manage video conference meetings using Google Meet. You explore different ways to open Google Meet and add people to a video conference. You also learn how to join meetings from different sources like calendar events or meeting links. We discuss how Google Meet can help you better communicate, exchange ideas, and share resources with your team wherever they are. You learn how to customize the Google Meet environment to fit your needs and how to effectively use chat messages during a video conference. You also explore different ways to share resources, such as by using calendar invites or attachments. You learn about using host controls in Google Meet to manage participants and utilize interactive moderation features. You also learn how to record and live stream video conferences.
¨Microservices" describes a software design pattern in which an application is a collection of loosely coupled services. These services are fine-grained, and can be individually maintained and scaled. The microservices architecture is ideal for the public cloud, with its focus on elastic scaling with on-demand resources. In this course, you will learn how to build Java applications using Spring Boot and Spring Cloud on Google Cloud. You'll use Spring Cloud Config to manage your application's configuration. You'll send and receive messages with Pub/Sub and Spring Integration. You'll also use Cloud SQL as a managed relational database for your Java applications, and learn how to migrate to Spanner, which is Google Cloud's globally-distributed strongly consistent database service. You'll also learn about tracing and debugging your Spring applications with Google Cloud Observability. To succeed in this course, you should be familiar with the Java programming language and building Java a…
With Google Slides, you can create and present professional presentations for sales, projects, training modules, and much more. Google Slides presentations are stored safely in the cloud. You build presentations right in your web browser—no special software is required. Even better, multiple people can work on your slides at the same time, you can see people’s changes as they make them, and every change is automatically saved. You will learn how to open Google Slides, create a blank presentation, and create a presentation from a template. You will explore themes, layout options, and how to add and format content, and speaker notes in your presentations. You will learn how to enhance your slides by adding tables, images, charts, and more. You will also learn how to use slide transitions and object animations in your presentation for visual effects. We will discuss how to organize slides and explore some of the options, including duplicating and ordering your slides, importi…
Learn to deploy and run Microsoft Windows® applications on Google Cloud. Through lectures and hands-on labs, learn how to configure and run Microsoft Windows and Microsoft SQL Server in Compute Engine. You will also learn how to develop and deploy ASP.NET applications and deploy them to Compute Engine, App Engine, and Google Kubernetes Engine.
In this course we will introduce you to Google Sheets, Google’s cloud-based spreadsheet software, included with Google Workspace. With Google Sheets, you can create and edit spreadsheets directly in your web browser—no special software is required. Multiple people can work simultaneously, you can see people’s changes as they make them, and every change is saved automatically. You will learn how to open Google Sheets, create a blank spreadsheet, and create a spreadsheet from a template. You will add, import, sort, filter and format your data using Google Sheets and learn how to work across different file types. Formulas and functions allow you to make quick calculations and better use your data. We will look at creating a basic formula, using functions, and referencing data. You will also learn how to add a chart to your spreadsheet. Google Sheets spreadsheets are easy to share. We will look at the different ways you can share with others. We will also discuss how to track changes…
Google Drive is Google’s cloud-based file storage service. Google Drive lets you keep all your work in one place, view different file formats without the need for additional software, and access your files from any device. In this course, you will learn how to navigate your Google Drive. You will learn how to upload files and folders and how to work across file types. You will also learn how you can easily view, arrange, organize, modify, and remove files in Google Drive. Google Drive includes shared drives. You can use shared drives to store, search, and access files with a team. You will learn how to create a new shared drive, add and manage members, and manage the shared drive content. Google Workspace is synonymous with collaboration and sharing. You will explore the sharing options available to you in Google Drive, and you will learn about the various collaborator roles and permissions that can be assigned. You’ll also explore ways to ensure consistency and save time…
With Google Docs, your documents are stored in the cloud, and you can access them from any computer or device. You create and edit documents right in your web browser; no special software is required. Even better, multiple people can work at the same time, you can see people’s changes as they make them, and every change is saved automatically. In this course, you will learn how to open Google Docs, create and format a new document, and apply a template to a new document. You will learn how to enhance your documents using a table of contents, headers and footers, tables, drawings, images, and more. You will learn how to share your documents with others. We will discuss your sharing options and examine collaborator roles and permissions. You will learn how to manage versions of your documents. Google Docs allows you to work in real time with others on the same document. You will learn how to create and manage comments and action items in your documents. We will review a few of the G…
With Google Calendar, you can quickly schedule meetings and events and create tasks, so you always know what’s next. Google Calendar is designed for teams, so it’s easy to share your schedule with others and create multiple calendars that you and your team can use together. In this course, you’ll learn how to create and manage Google Calendar events. You will learn how to update an existing event, delete and restore events, and search your calendar. You will understand when to apply different event types such as tasks and appointment schedules. You will explore the Google Calendar settings that are available for you to customize Google Calendar to suit your way of working. During the course you will learn how to create additional calendars, share your calendars with others, and access other calendars in your organization.
This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.
Gmail is Google’s cloud based email service that allows you to access your messages from any computer or device with just a web browser. In this course, you’ll learn how to compose, send and reply to messages. You will also explore some of the common actions that can be applied to a Gmail message, and learn how to organize your mail using Gmail labels. You will explore some common Gmail settings and features. For example, you will learn how to manage your own personal contacts and groups, customize your Gmail Inbox to suit your way of working, and create your own email signatures and templates. Google is famous for search. Gmail also includes powerful search and filtering. You will explore Gmail’s advanced search and learn how to filter messages automatically.
Google Cloud is committed to supporting Windows workloads in its frameworks and services. In this quest, you will get hands-on practice running Microsoft’s ASP.net (web app framework) on Google Cloud. ASP.NET is an open-source and cross-platform framework for building modern cloud-based and internet-connected applications using the C# programming language.
Explore the fundamentals of Flutter application development in this hands-on quest! Within this quest, you will build a "Hello World" Flutter application, design a frontend for a shopping application, and learn how to connect your Flutter applications to backend services. Each lab in this quest utilizes a pre-provisioned development environment allowing minimal setup to get into the application code!
This fundamental-level quest is unique amongst the other quest offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Cloud Architect Certification. From IAM, to networking, to Kubernetes engine deployment, this quest is composed of specific labs that will put your Google Cloud knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, we recommend that you also review the exam guide and other available preparation resources.
The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This third course covers cloud automation and management tools and building secure networks.
The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This final course in the series reviews managed big data services, machine learning and its value, and how to demonstrate your skill set in Google Cloud further by earning Skill Badges.
The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud
The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This first course provides an overview of cloud computing, ways to use Google Cloud, and different compute options.
Google Cloud Application Programming Interfaces are the mechanism to interact with Google Cloud Services programmatically. This quest will give you hands-on practice with a variety of GCP APIs, which you will learn through working with Google’s APIs Explorer, a tool that allows you to browse APIs and run their methods interactively. By learning how to transfer data between Cloud Storage buckets, deploy Compute Engine instances, configure Dataproc clusters and much more, Exploring APIs will show you how powerful APIs are and why they are used almost exclusively by proficient GCP users. Enroll in this quest today.
这是一套自助式速成课程,向学员介绍 Google Cloud 提供的灵活全面的基础架构和平台服务。学员将通过一系列视频讲座、演示和实操实验,探索和部署各种解决方案元素,包括安全互连网络、负载均衡、自动扩缩、基础架构自动化和代管式服务。
这门自助式速成课程向学员介绍 Google Cloud 提供的灵活全面的基础架构和平台服务,着重介绍了 Compute Engine。学员将通过一系列视频讲座、演示和动手实验,探索和部署各种解决方案元素,包括网络、系统和应用服务等基础架构组件。本课程的内容还包括如何部署实用的解决方案,包括客户提供的加密密钥、安全和访问权限管理、配额和结算,以及资源监控。
这门自助式速成课程向学员介绍 Google Cloud 提供的灵活全面的基础架构和平台服务,其中着重介绍了 Compute Engine。学员将通过一系列视频讲座、演示和动手实验,探索和部署各种解决方案元素,包括网络、虚拟机和应用服务等基础架构组件。您将学习如何通过控制台和 Cloud Shell 使用 Google Cloud。您还将了解云架构师角色、基础架构设计方法以及虚拟网络配置和虚拟私有云 (VPC)、项目、网络、子网、IP 地址、路由及防火墙规则。
Organizations of all sizes are embracing the power and flexibility of the cloud to transform how they operate. However, managing and scaling cloud resources effectively can be a complex task. Scaling with Google Cloud Operations explores the fundamental concepts of modern operations, reliability, and resilience in the cloud, and how Google Cloud can help support these efforts. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Many traditional enterprises use legacy systems and applications that can't stay up-to-date with modern customer expectations. Business leaders often have to choose between maintaining their aging IT systems or investing in new products and services. "Modernize Infrastructure and Applications with Google Cloud" explores these challenges and offers solutions to overcome them by using cloud technology. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Cloud technology can bring great value to an organization, and combining the power of cloud technology with data has the potential to unlock even more value and create new customer experiences. “Exploring Data Transformation with Google Cloud” explores the value data can bring to an organization and ways Google Cloud can make data useful and accessible. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
There's much excitement about cloud technology and digital transformation, but often many unanswered questions. For example: What is cloud technology? What does digital transformation mean? How can cloud technology help your organization? Where do you even begin? If you've asked yourself any of these questions, you're in the right place. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey. If you want to learn about cloud technology so you can excel in your role and help build the future of your business, then this introductory course on digital transformation is for you. This course is part of the Cloud Digital Leader learning path.
完成“在 Google Cloud 上设置应用开发环境”课程,赢取技能徽章;通过该课程,您将了解如何使用以下技术的基本功能来构建和连接以存储为中心的云基础设施: Cloud Storage、Identity and Access Management、Cloud Functions 和 Pub/Sub。
如果您是一位入门级云开发者, 在学习了“Google Cloud 基础知识”课程之后,想要寻求真正的实操机会,这门课程就是您的不二之选。您将获得宝贵的实操经验, 通过多个实验深入探索 Cloud Storage 以及 Monitoring 和 Cloud Functions 等其他关键应用服务。您将掌握一系列宝贵技能, 在 Google Cloud 的任何计划中,这些技能都能发挥作用。
在此入门级挑战任务中,您可以使用 Google Cloud Platform 的基本工具和服务,开展真枪实弹的操作实训。“GCP 基本功能”是我们为 Google Cloud 学员推荐的第一项挑战任务。云知识储备微乎其微甚至零基础?不用担心!这项挑战任务会为您提供真枪实弹的实操经验,助您快速上手 GCP 项目。无论是要编写 Cloud Shell 命令还是部署您的第一台虚拟机,亦或是通过负载平衡机制或在 Kubernetes Engine 上运行应用,都可以通过“GCP 基本功能”了解该平台的基本功能之精要。点此观看 1 分钟视频,了解每个实验涉及的主要概念。
Using large scale computing power to recognize patterns and "read" images is one of the foundational technologies in AI, from self-driving cars to facial recognition. The Google Cloud Platform provides world class speed and accuracy via systems that can utilized by simply calling APIs. With these and a host of other APIs, GCP has a tool for just about any machine learning job. In this introductory quest, you will get hands-on practice with machine learning as it applies to image processing by taking labs that will enable you to label images, detect faces and landmarks, as well as extract, analyze, and translate text from within images.
完成入门级在 Compute Engine 上实现负载均衡技能徽章课程,展示自己在以下方面的技能: 编写 gcloud 命令和使用 Cloud Shell,在 Compute Engine 中创建和部署虚拟机, 以及配置网络和 HTTP 负载均衡器。 技能徽章是由 Google Cloud 颁发的专属数字徽章, 旨在认可您在 Google Cloud 产品与服务方面的熟练度; 该课程会检验您在交互式实操环境中运用所学知识的 能力。完成此技能徽章课程和作为最终评估的实验室挑战赛, 即可获得技能徽章,并在您的圈子中秀一秀。