Dr. Balasubramani R NMAMIT
Date d'abonnement : 2019
Ligue de Diamant
51415 points
Date d'abonnement : 2019
Dans ce cours, vous découvrirez Google Vids, une application de création et de montage de vidéos en ligne accessible à certains utilisateurs de Google Workspace. À travers des leçons et des démonstrations, vous apprendrez à créer et à raconter des histoires captivantes en vidéo pour le travail. Vous verrez également comment intégrer de manière fluide des éléments multimédias, des extraits audio et vidéo, personnaliser les styles et partager facilement vos créations. Certaines fonctionnalités Vids utilisent l'IA générative pour vous aider à travailler plus efficacement. Pour rappel, les outils d'IA générative, Gemini compris, peuvent suggérer des informations inexactes ou inappropriées. Vous ne devez pas considérer les réponses générées par Gemini et ses fonctionnalités comme des conseils médicaux, juridiques, financiers ou de toute autre nature professionnelle. Sachez aussi que les suggestions des fonctionnalités de Gemini ne représentent pas l'opinion de Google et ne doivent pas être…
Gemini pour Google Workspace est un module complémentaire qui permet aux utilisateurs d'accéder à des fonctionnalités d'IA générative. Ce cours explore les fonctionnalités de Gemini dans Google Drive au moyen de vidéos pédagogiques, d'activités pratiques et d'exemples concrets. À la fin de ce cours, vous disposerez des connaissances et des compétences nécessaires pour utiliser Gemini en toute confiance dans Google Drive afin d'améliorer vos workflows.
Gemini pour Google Workspace est un module complémentaire qui permet aux utilisateurs d'accéder à des fonctionnalités d'IA générative. Ce cours explore les fonctionnalités de Gemini dans Google Meet. Au moyen de vidéos pédagogiques, d'activités pratiques et d'exemples concrets, vous allez découvrir les fonctionnalités de Gemini dans Google Meet. Vous allez apprendre à utiliser Gemini pour générer des images d'arrière-plan, améliorer la qualité de la vidéo et traduire des sous-titres. À la fin de ce cours, vous disposerez des connaissances et des compétences nécessaires pour utiliser Gemini en toute confiance dans Google Meet afin d'optimiser l'efficacité de vos visioconférences.
Gemini pour Google Workspace est un module complémentaire qui fournit aux clients des fonctionnalités d'IA générative dans Google Workspace. Dans ce petit cours, vous allez découvrir les principales fonctionnalités de Gemini et comment elles peuvent servir à améliorer la productivité et l'efficacité dans Google Sheets.
Gemini pour Google Workspace est un module complémentaire qui fournit aux clients des fonctionnalités d'IA générative dans Google Workspace. Dans ce petit cours, vous allez découvrir les principales fonctionnalités de Gemini et comment elles peuvent servir à améliorer la productivité et l'efficacité dans Google Slides.
Gemini pour Google Workspace est un module complémentaire qui permet aux utilisateurs d'accéder à des fonctionnalités d'IA générative. Ce cours explore les fonctionnalités de Gemini dans Google Docs au moyen de vidéos pédagogiques, d'activités pratiques et d'exemples concrets. Vous allez apprendre à utiliser Gemini pour générer des contenus écrits basés sur des requêtes. Vous allez également découvrir comment l'utiliser pour modifier du texte que vous avez déjà rédigé, vous aidant ainsi à améliorer votre productivité globale. À la fin de ce cours, vous disposerez des connaissances et des compétences nécessaires pour utiliser Gemini en toute confiance dans Google Docs afin d'améliorer vos écrits.
Gemini pour Google Workspace est un module complémentaire qui fournit aux clients des fonctionnalités d'IA générative dans Google Workspace. Dans ce petit cours, vous allez découvrir les principales fonctionnalités de Gemini et comment elles peuvent servir à améliorer la productivité et l'efficacité dans Gmail.
Gemini pour Google Workspace est un module complémentaire qui fournit aux clients des fonctionnalités d'IA générative dans Google Workspace. Dans ce parcours de formation, vous allez découvrir les principales fonctionnalités de Gemini et comment elles peuvent servir à améliorer la productivité et l'efficacité dans Google Workspace.
Le cours "Agents d'IA générative : transformer l'entreprise" est le cinquième et dernier du parcours de formation "Leader en IA générative". Ce cours aborde la façon dont les entreprises peuvent utiliser des agents d'IA générative personnalisés pour relever des défis métier spécifiques. Des exercices pratiques vous apprendront à créer un agent d'IA générative de base tout en découvrant les composants de ces agents, comme les modèles, les boucles de raisonnement et les outils.
Le cours "Applications d'IA générative : changez votre façon de travailler" est le quatrième du parcours de formation "Leader en IA générative". Ce cours présente les applications d'IA générative de Google, telles que Gemini pour Workspace et NotebookLM. Il vous guide à travers des concepts comme l'ancrage, la génération augmentée par récupération, la création de requêtes efficaces et la conception de workflows automatisés.
Le cours "IA générative : se familiariser avec le domaine" est le troisième du parcours de formation "Leader en IA générative". L'IA générative change notre façon de travailler et d'interagir avec le monde autour de nous. En tant que responsable, comment pouvez-vous exploiter son potentiel pour obtenir des résultats commerciaux concrets ? Dans ce cours, vous allez découvrir les différentes couches qui composent une solution d'IA générative, les offres de Google Cloud et les facteurs à prendre en compte au moment de choisir une solution.
Le cours "IA générative : découvrir les concepts fondamentaux" est le deuxième du parcours de formation "Leader en IA générative". Ce cours vous permettra de découvrir les concepts fondamentaux de l'IA générative en examinant les différences entre l'IA, le ML et l'IA générative. Vous comprendrez également comment l'IA générative permet de relever les défis métier à l'aide des différents types de données. Enfin, vous découvrirez les stratégies de Google Cloud pour gérer les limites des modèles de fondation et quelles sont les grandes problématiques du développement et du déploiement d'une IA responsable et sécurisée.
Le cours "IA générative : au-delà du chatbot" est le premier du parcours de formation "Leader en IA générative" et n'a aucun prérequis. Ce cours vise à approfondir votre compréhension de base des chatbots afin de révéler le véritable potentiel de l'IA générative pour votre entreprise. Vous découvrirez des concepts tels que les modèles de fondation et le prompt engineering (ingénierie des requêtes), qui sont essentiels pour exploiter toute la puissance de l'IA générative. Ce cours vous aidera également à identifier les facteurs à prendre en compte pour développer une stratégie d'IA générative efficace pour votre entreprise.
Ce cours aide les participants à créer un plan de formation pour l'examen de certification afin de devenir ingénieur professionnel en machine learning (PMLE, Professional Machine Learning Engineer). Ils découvriront l'ampleur et le champ d'application des domaines abordés lors de l'examen. Ils détermineront s'ils sont prêts à passer l'examen et créeront leur propre plan de formation.
This is the fifth of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll combine and apply the foundational knowledge and skills from courses 1-4 in a hands-on Capstone project that focuses on the full data lifecycle project. You’ll practice using cloud-based tools to acquire, store, process, analyze, visualize, and communicate data insights effectively. By the end of the course, you’ll have completed a project demonstrating their proficiency in effectively structuring data from multiple sources, presenting solutions to varied stakeholders, and visualizing data insights using cloud-based software. You’ll also update your resume and practice interview techniques to help prepare for applying and interviewing for jobs.
This is the second of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll explore how data is structured and organized. You’ll gain hands-on experience with the data lakehouse architecture and cloud components like BigQuery, Google Cloud Storage, and DataProc to efficiently store, analyze, and process large datasets.
This is the fourth of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll focus on developing skills in the five key stages of visualizing data in the cloud: storytelling, planning, exploring data, building visualizations, and sharing data with others. You’ll also gain experience using UI/UX skills to wireframe impactful, cloud-native visualizations and work with cloud-native data visualization tools to explore datasets, create reports, and build dashboards that drive decisions and foster collaboration.
This is the third of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll begin by getting an overview of the data journey, from collection to insights. You’ll then learn how to use SQL to transform raw data into a usable format. Next, you’ll learn how to transform high volumes of data with a data pipeline. Finally, you’ll gain experience applying transformation strategies to real data sets to solve business needs.
This is the first of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll define the field of cloud data analysis and describe roles and responsibilities of a cloud data analyst as they relate to data acquisition, storage, processing, and visualization. You’ll explore the architecture of Google Cloud-based tools, like BigQuery and Cloud Storage, and how they are used to effectively structure, present, and report data.
Terminez le cours d'introduction Conception de requêtes dans Vertex AI pour recevoir un badge démontrant vos compétences dans les domaines suivants : le prompt engineering (ingénierie des requêtes), l'analyse d'images et les techniques d'IA générative multimodale dans Vertex AI. Découvrez comment élaborer des requêtes efficaces, guider les résultats de l'IA générative et appliquer des modèles Gemini à des scénarios marketing concrets. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.
Ce cours présente les outils et les bonnes pratiques MLOps pour déployer, évaluer, surveiller et exploiter des systèmes de ML en production sur Google Cloud. Le MLOps est une discipline axée sur le déploiement, le test, la surveillance et l'automatisation des systèmes de ML en production. Les participants s'entraîneront à utiliser l'ingestion en flux continu de Vertex AI Feature Store au niveau du SDK.
Ce cours présente les outils et les bonnes pratiques MLOps pour déployer, évaluer, surveiller et exploiter des systèmes de ML en production sur Google Cloud. Le MLOps est une discipline axée sur le déploiement, le test, la surveillance et l'automatisation des systèmes de ML en production. Les ingénieurs en machine learning utilisent des outils pour améliorer et évaluer en permanence les modèles déployés. Ils collaborent avec des data scientists (ou peuvent occuper ce poste) qui développent des modèles permettant de déployer de manière rapide et rigoureuse les solutions de machine learning les plus performantes.
In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.
This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.
Dans ce cours, nous abordons en détail les composants et les bonnes pratiques de construction de systèmes de ML hautes performances dans des environnements de production. Nous verrons aussi certaines des considérations les plus courantes concernant la construction de ces systèmes, telles que l'entraînement statique, l'entraînement dynamique, l'inférence statique, l'inférence dynamique, les tâches TensorFlow distribuées et les TPU. Ce cours a pour objectif d'explorer les caractéristiques d'un bon système de ML, au-delà de sa capacité à effectuer des prédictions correctes.
Ce cours présente une approche pratique du workflow de ML avec une étude de cas dans laquelle une équipe est confrontée à plusieurs exigences métier et cas d'utilisation de ML. Cette équipe doit comprendre quels outils sont nécessaires pour gérer et gouverner les données, et trouver la meilleure approche pour les prétraiter. On présente à cette équipe trois options de création de modèles de ML pour deux cas d'utilisation spécifiques. Ce cours explique pourquoi l'équipe tire parti des avantages d'AutoML, de BigQuery ML ou de l'entraînement personnalisé pour atteindre ses objectifs.
Ce cours présente les avantages liés à l'utilisation de Vertex AI Feature Store, ainsi que la manière d'améliorer la précision des modèles de ML et de déterminer les colonnes de données présentant les caractéristiques les plus utiles. Ce cours inclut également du contenu et des ateliers portant sur l'ingénierie des caractéristiques à l'aide de BigQuery ML, Keras et TensorFlow.
Ce cours porte sur la création de modèles de ML à l'aide de TensorFlow et Keras, l'amélioration de la précision des modèles de ML et l'écriture de modèles de ML pour une utilisation évolutive.
Le cours commence par une discussion sur les données : vous découvrirez comment améliorer leur qualité et effectuer des analyses exploratoires. Ensuite, nous vous présenterons Vertex AI AutoML et vous expliquerons comment créer, entraîner et déployer un modèle de machine learning (ML) sans écrire une ligne de code. Vous découvrirez également les avantages de BigQuery ML. Enfin, nous verrons comment optimiser un modèle de ML, et en quoi la généralisation ainsi que l'échantillonnage peuvent vous aider à évaluer la qualité des modèles de ML destinés à un entraînement personnalisé.
Ce cours présente les solutions d'IA et de machine learning (ML) de Google Cloud permettant de développer des projets d'IA prédictive et générative. Il décrit les technologies, produits et outils disponibles tout au long du cycle de vie des données à l'IA, en englobant les éléments de base, le développement et les solutions d'IA. Son but est d'aider les data scientists, les développeurs d'IA et les ingénieurs en ML à améliorer leurs compétences et connaissances par le biais d'expériences d'apprentissage captivantes et d'exercices pratiques.
Avec l'essor de l'utilisation de l'intelligence artificielle et du machine learning en entreprise, il est de plus en plus important de développer ces technologies de manière responsable. Pour beaucoup, le véritable défi réside dans la mise en pratique de l'IA responsable, qui s'avère bien plus complexe que dans la théorie. Si vous souhaitez découvrir comment opérationnaliser l'IA responsable dans votre organisation, ce cours est fait pour vous. Dans ce cours, vous allez apprendre comment Google Cloud procède actuellement, en s'appuyant sur des bonnes pratiques et les enseignements tirés, afin de vous fournir un framework pour élaborer votre propre approche d'IA responsable.
Le cours "Explorateur de l'IA générative – Vertex AI" est un ensemble d'ateliers consacrés à l'utilisation de l'IA générative sur Google Cloud. Vous apprendrez à utiliser les modèles de la famille d'API PaLM Vertex AI comme text-bison, chat-bison, et textembedding-gecko. Vous découvrirez également comment rédiger des prompts, quelles bonnes pratiques appliquer, et comment utiliser l'IA générative pour l'idéation, la classification et l'extraction de texte, la création de synthèses, et plus encore. Enfin, vous apprendrez à régler un modèle de fondation à l'aide de l'entraînement personnalisé Vertex AI et à le déployer sur un point de terminaison Vertex AI.
Gmail is Google’s cloud based email service that allows you to access your messages from any computer or device with just a web browser. In this course, you’ll learn how to compose, send and reply to messages. You will also explore some of the common actions that can be applied to a Gmail message, and learn how to organize your mail using Gmail labels. You will explore some common Gmail settings and features. For example, you will learn how to manage your own personal contacts and groups, customize your Gmail Inbox to suit your way of working, and create your own email signatures and templates. Google is famous for search. Gmail also includes powerful search and filtering. You will explore Gmail’s advanced search and learn how to filter messages automatically.
Ce cours présente Vertex AI Studio, un outil permettant d'interagir avec des modèles d'IA générative, de prototyper des idées commerciales et de les envoyer en production. Au moyen d'un cas d'utilisation immersif, de leçons captivantes et d'un atelier pratique, vous allez découvrir le cycle de vie de la requête au produit. Vous apprendrez également à utiliser Vertex AI Studio pour les applications multimodales Gemini, la conception de requêtes, le prompt engineering (ingénierie des requêtes) et le réglage de modèles. L'objectif est de vous permettre d'exploiter tout le potentiel de l'IA générative dans vos projets avec Vertex AI Studio.
Dans ce cours, vous allez apprendre à créer un modèle de sous-titrage d'images à l'aide du deep learning. Vous découvrirez les différents composants de ce type de modèle, comme l'encodeur et le décodeur, et comment l'entraîner et l'évaluer. À la fin du cours, vous serez en mesure de créer vos propres modèles de sous-titrage d'images et de les utiliser pour générer des sous-titres pour des images.
Ce cours présente l'architecture Transformer et le modèle BERT (Bidirectional Encoder Representations from Transformers). Vous découvrirez quels sont les principaux composants de l'architecture Transformer, tels que le mécanisme d'auto-attention, et comment ils sont utilisés pour créer un modèle BERT. Vous verrez également les différentes tâches pour lesquelles le modèle BERT peut être utilisé, comme la classification de texte, les questions-réponses et l'inférence en langage naturel. Ce cours dure environ 45 minutes.
Ce cours présente le mécanisme d'attention, une technique efficace permettant aux réseaux de neurones de se concentrer sur des parties spécifiques d'une séquence d'entrée. Vous découvrirez comment fonctionne l'attention et comment l'utiliser pour améliorer les performances de diverses tâches de machine learning, dont la traduction automatique, la synthèse de texte et les réponses aux questions.
Ce cours offre un aperçu de l'architecture encodeur/décodeur, une architecture de machine learning performante souvent utilisée pour les tâches "seq2seq", telles que la traduction automatique, la synthèse de texte et les questions-réponses. Vous découvrirez quels sont les principaux composants de l'architecture encodeur/décodeur, et comment entraîner et exécuter ces modèles. Dans le tutoriel d'atelier correspondant, vous utiliserez TensorFlow pour coder une implémentation simple de cette architecture afin de générer un poème en partant de zéro.
Ce cours présente les modèles de diffusion, une famille de modèles de machine learning qui s'est récemment révélée prometteuse dans le domaine de la génération d'images. Les modèles de diffusion trouvent leur origine dans la physique, et plus précisément dans la thermodynamique. Au cours des dernières années, ils ont gagné en popularité dans la recherche et l'industrie. Ils sont à la base de nombreux modèles et outils Google Cloud avancés de génération d'images. Ce cours vous présente les bases théoriques des modèles de diffusion, et vous explique comment les entraîner et les déployer sur Vertex AI.
Suivez les cours Introduction to Generative AI, Introduction to Large Language Models et Introduction to Responsible AI, et obtenez un badge de compétence. Votre réussite au quiz final démontrera que vous comprenez les concepts de base relatifs à l'IA générative. Un badge de compétence est un badge numérique délivré par Google Cloud. Il atteste de votre expertise sur les produits et services Google Cloud. Partagez votre badge de compétence en rendant votre profil public et en l'ajoutant à votre profil sur les réseaux sociaux.
Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA responsable, souligne son importance et décrit comment Google l'implémente dans ses produits. Il présente également les sept principes de l'IA de Google.
Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce que sont les grands modèles de langage (LLM). Il inclut des cas d'utilisation et décrit comment améliorer les performances des LLM grâce au réglage des requêtes. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.
Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA générative, décrit à quoi elle sert et souligne ce qui la distingue des méthodes de machine learning traditionnel. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.
Ce cours vous aide à préparer l'examen pour obtenir la certification Associate Cloud Engineer. Vous découvrirez les domaines Google Cloud abordés dans l'examen et verrez comment créer un plan de formation pour améliorer vos connaissances de ces domaines.
Bienvenue dans le cours "Premiers pas avec Google Kubernetes Engine". Si vous vous intéressez à Kubernetes, une couche logicielle située entre vos applications et votre infrastructure matérielle, vous êtes au bon endroit. Google Kubernetes Engine vous permet d'accéder à Kubernetes en tant que service géré sur Google Cloud. L'objectif de ce cours est de vous présenter les principes de base de Google Kubernetes Engine (GKE), et de vous apprendre à conteneuriser et exécuter des applications dans Google Cloud. Le cours commence par une introduction aux principes de base de Google Cloud, puis se poursuit par une présentation des conteneurs et de Kubernetes, de l'architecture de Kubernetes et des opérations Kubernetes.
Ce cours à la demande accéléré présente aux participants les services complets et flexibles d'infrastructure et de plate-forme offerts par Google Cloud. À travers un ensemble de cours vidéo, de démonstrations et d'ateliers pratiques, les participants explorent et déploient des éléments de solution, y compris l'interconnexion sécurisée de réseaux, l'équilibrage de charge, l'autoscaling, l'automatisation de l'infrastructure et les services gérés.
Ce cours accéléré à la demande présente aux participants l'infrastructure complète et flexible de Google Cloud Platform ainsi que les services de plate-forme fournis, en s'intéressant plus particulièrement à Compute Engine. À travers un ensemble de vidéos de présentation, de démonstrations et d'ateliers pratiques, les participants découvrent et déploient des éléments de solution, y compris des composants d'infrastructure tels que les réseaux, les systèmes et les services applicatifs. Ce cours aborde également le déploiement de solutions pratiques, telles que les clés de chiffrement fournies par le client, la gestion de la sécurité et des accès, les quotas et la facturation, ainsi que la surveillance des ressources.
Ce cours accéléré à la demande présente aux participants les services complets et flexibles d'infrastructure et de plate-forme offerts par Google Cloud, en s'intéressant plus particulièrement à Compute Engine. À travers un ensemble de cours vidéo, de démonstrations et d'ateliers pratiques, les participants découvrent et déploient des éléments de solution, y compris des composants d'infrastructure tels que des réseaux, des machines virtuelles et des services d'applications. Vous découvrirez comment utiliser Google Cloud via la console et Cloud Shell. Vous en apprendrez également plus sur le rôle d'un architecte cloud, sur les approches de la conception d'infrastructure et sur la configuration de réseaux virtuels avec Virtual Private Cloud (VPC), les projets, les réseaux, les sous-réseaux, les adresses IP, les routes et les règles de pare-feu.
Concepts fondamentaux de Google Cloud : Core Infrastructure présente les concepts et les termes à connaître pour utiliser Google Cloud. À travers des vidéos et des ateliers pratiques, il décrit et compare la plupart des services Google Cloud de calcul et de stockage, ainsi que des outils importants de gestion des ressources et des règles.
La technologie cloud et la transformation numérique suscitent beaucoup d'enthousiasme, mais elles génèrent aussi souvent beaucoup de questions laissées sans réponse. Par exemple : Qu'est-ce que la technologie cloud ? Qu'entend-on par transformation numérique ? Que peut vous apporter la technologie cloud ? Et par où commencer ? Si vous vous êtes déjà posé une de ces questions, vous êtes au bon endroit. Ce cours offre un aperçu des opportunités et des défis que les entreprises peuvent rencontrer lors de leur transformation numérique. Si vous souhaitez découvrir les technologies cloud afin de pouvoir exceller dans votre rôle et contribuer à bâtir l'avenir de votre entreprise, ce cours d'introduction sur la transformation numérique est pour vous. Il fait partie du parcours de formation Cloud Digital Leader.
The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This final course in the series reviews managed big data services, machine learning and its value, and how to demonstrate your skill set in Google Cloud further by earning Skill Badges.
Le cours Google Cloud Computing Foundations est destiné aux personnes qui ont peu de connaissances ou d’expérience en cloud computing, voire pas du tout. Il présente de façon détaillée différents concepts (principes de base du cloud, big data et machine learning) et explique dans quels cas utiliser Google Cloud et pourquoi. Au terme de ce cours, les participants sauront expliquer les concepts associés au cloud computing, au big data et au machine learning, et ils auront acquis certaines compétences pratiques. Ce cours fait partie d'une série de cours intitulée Google Cloud Computing Foundations. Les cours doivent être suivis dans l'ordre suivant : Google Cloud Computing Foundations: Cloud Computing Fundamentals - Locales Google Cloud Computing Foundations: Infrastructure in Google Cloud - Locales Google Cloud Computing Foundations: Networking and Security in Google Cloud - Locales Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud -…
Le cours Google Cloud Computing Foundations est destiné aux personnes qui ont peu de connaissances ou d’expérience en cloud computing, voire pas du tout. Il présente de façon détaillée différents concepts (principes de base du cloud, big data et machine learning) et explique dans quels cas utiliser Google Cloud et pourquoi. Au terme de ce cours, les participants sauront expliquer les concepts associés au cloud computing, au big data et au machine learning, et ils auront acquis certaines compétences pratiques. Ce cours fait partie d'une série de cours intitulée Google Cloud Computing Foundations. Les cours doivent être suivis dans l'ordre suivant : Google Cloud Computing Foundations: Cloud Computing Fundamentals - Locales Google Cloud Computing Foundations: Infrastructure in Google Cloud - Locales Google Cloud Computing Foundations: Networking and Security in Google Cloud - Locales Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud -…
Le cours Google Cloud Computing Foundations est destiné aux personnes qui ont peu de connaissances ou d’expérience en cloud computing, voire pas du tout. Il présente de façon détaillée différents concepts (principes de base du cloud, big data et machine learning) et explique dans quels cas utiliser Google Cloud et pourquoi. Au terme de ce cours, les participants sauront expliquer les concepts associés au cloud computing, au big data et au machine learning, et ils auront acquis certaines compétences pratiques. Ce cours fait partie d'une série de cours intitulée Google Cloud Computing Foundations. Les cours doivent être suivis dans l'ordre suivant : Google Cloud Computing Foundations: Cloud Computing Fundamentals - Locales Google Cloud Computing Foundations: Infrastructure in Google Cloud - Locales Google Cloud Computing Foundations: Networking and Security in Google Cloud - Locales Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud…
With Google Assistant part of over a billion consumer devices, this quest teaches you how to build practical Google Assistant applications integrated with Google Cloud services via APIs. Example apps will use the Dialogflow conversational suite and the Actions and Cloud Functions frameworks. You will build 5 different applications that explore useful and fun tools you can extend on your own. No hardware required! These labs use the cloud-based Google Assistant simulator environment for developing and testing, but if you do have your own device, such as a Google Home or a Google Hub, additional instructions are provided on how to deploy your apps to your own hardware.
Machine Learning is one of the most innovative fields in technology, and the Google Cloud Platform has been instrumental in furthering its development. With a host of APIs, Google Cloud has a tool for just about any machine learning job. In this advanced-level course, you will get hands-on practice with machine learning at scale and how to employ the advanced ML infrastructure available on Google Cloud.
Ce cours d'introduction est unique en son genre parmi les autres offres de cours. Il se compose d'ateliers pratiques conçus pour permettre aux professionnels de l'informatique de se familiariser avec les sujets et les services au programme de la certification Google Cloud Certified Associate Cloud Engineer. De l'IAM à la gestion de réseaux en passant par le déploiement avec Kubernetes Engine, vous allez suivre dans ce cours des ateliers spécifiques qui mettront à l'épreuve vos connaissances sur Google Cloud. Attention : même si ces ateliers constituent une bonne base pour développer vos compétences, nous vous recommandons de consulter en supplément le guide de l'examen et les autres ressources de préparation disponibles.
Big data, machine learning et données scientifiques ? Il semble que ce soit la combinaison parfaite. Dans cette quête avancée, vous allez vous familiariser avec des services GCP tels que Big Query, Dataproc et Tensorflow, que vous appliquerez à des cas utilisant des ensembles de données scientifiques réelles. En vous faisant acquérir de l'expérience avec des tâches telles que l'analyse des données sismiques et l'agrégation d'images satellites, le traitement de données scientifiques développera vos compétences dans le domaine du Big data et du machine learning, et vous aidera à résoudre les problèmes que vous rencontrez dans différentes disciplines scientifiques.
In this advanced-level quest, you will learn how to harness serious Google Cloud computing power to run big data and machine learning jobs. The hands-on labs will give you use cases, and you will be tasked with implementing big data and machine learning practices utilized by Google’s very own Solutions Architecture team. From running Big Query analytics on tens of thousands of basketball games, to training TensorFlow image classifiers, you will quickly see why Google Cloud is the go-to platform for running big data and machine learning jobs.
Want to scale your data analysis efforts without managing database hardware? Learn the best practices for querying and getting insights from your data warehouse with this interactive series of BigQuery labs. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.
Vous voulez créer un entrepôt de données ou l'optimiser ? Découvrez les bonnes pratiques d'extraction, de transformation et de chargement des données dans Google Cloud avec BigQuery. Dans cette série d'ateliers interactifs, vous allez créer votre propre entrepôt de données et l'optimiser en utilisant différents ensembles de données publics à grande échelle de BigQuery. BigQuery est la base de données d'analyse à faible coût de Google, entièrement gérée et qui ne nécessite aucune opération (NoOps). Avec BigQuery, vous pouvez interroger des téraoctets de données sans avoir à gérer d'infrastructure ni faire appel à un administrateur de base de données. Basé sur le langage SQL et le modèle de paiement à l'usage, BigQuery vous permet de vous concentrer sur l'analyse des données pour en dégager des informations pertinentes.
TensorFlow is an open source software library for high performance numerical computation that's great for writing models that can train and run on platforms ranging from your laptop to a fleet of servers in the Cloud to an edge device. This quest takes you beyond the basics of using predefined models and teaches you how to build, train and deploy your own on Google Cloud.
Il n'a échappé à personne que le machine learning est une technologie très dynamique, et Google Cloud Platform a joué un rôle déterminant dans son développement. Doté d'une multitude d'API.
Want to learn the core SQL and visualization skills of a Data Analyst? Interested in how to write queries that scale to petabyte-size datasets? Take the BigQuery for Analyst Quest and learn how to query, ingest, optimize, visualize, and even build machine learning models in SQL inside of BigQuery.
Il n'a échappé à personne que le machine learning est une technologie très dynamique, et Google Cloud Platform a joué un rôle déterminant dans son développement. Doté d'une multitude d'API, GCP propose un outil pour pratiquement toutes les tâches de machine learning. Avec ce cours d'introduction, vous allez vous familiariser avec le machine learning et son application au traitement du langage. Au cours de divers ateliers, vous allez extraire des entités à partir de texte, effectuer une analyse des sentiments et de la syntaxe, ainsi que transcrire du contenu audio avec l'API Speech-to-Text.
L'utilisation de la puissance de calcul à grande échelle pour détecter des modèles et lire des images est l'une des technologies fondamentales de l'IA, des voitures sans conducteur à la reconnaissance faciale. Google Cloud Platform offre une vitesse et une précision de pointe grâce à des systèmes qui peuvent être utilisés simplement en appelant des API. Doté en plus d'une multitude d'API, GCP propose un outil pour pratiquement toutes les tâches de machine learning. Dans ce cours d'introduction, vous allez vous familiariser avec le machine learning et son application au traitement de l'image. Au cours de divers ateliers, vous allez étiqueter des images, détecter des visages et des points de repère, mais aussi extraire, analyser et traduire du texte à partir d'images.
This advanced-level quest is unique amongst the other catalog offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Data Engineer Certification. From Big Query, to Dataprep, to Cloud Composer, this quest is composed of specific labs that will put your Google Cloud data engineering knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, you will need other preparation, too. The exam is quite challenging and external studying, experience, and/or background in cloud data engineering is recommended. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of the Engineer Data in the Google Cloud to receive an exclusive Google Cloud digital badge.
Créer des modèles de machine learning en quelques minutes au lieu de plusieurs heures grâce à SQL, ça vous intéresse ? BigQuery ML démocratise le machine learning en permettant aux analystes de données de créer, d'entraîner et d'évaluer des modèles de ML, puis de les utiliser pour faire des prédictions, en s'appuyant sur leurs outils SQL et leurs connaissances actuelles dans ce langage. Dans cette série d'ateliers, vous allez essayer différents types de modèles et apprendre ce qui caractérise un bon modèle.
Il s'agit de la deuxième quête des ateliers dérivés des exercices du livre Data Science on Google Cloud Platform de Valliappa Lakshmanan, publié par O'Reilly Media, Inc. Dans cette seconde quête, qui couvre du chapitre neuf à la fin du livre, vous développez les compétences acquises lors de la première quête et exécutez des tâches de machine learning de A à Z avec des outils de pointe et des ensembles de données réels, le tout à l'aide des outils et services de Google Cloud Platform.
Cette quête est la première d'une série de deux comprenant des ateliers pratiques tirés d'exercices disponibles dans l'ouvrage Data Science on Google Cloud Platform de Valliappa Lakshmanan, publié par O'Reilly Media, Inc. Dans cette première quête, qui couvre les chapitres 1 à 8, vous découvrez tous les aspects de l'ingestion, de la préparation, du traitement, de l'interrogation, de l'exploration et de la visualisation des ensembles de données à l'aide des outils et des services de Google Cloud Platform.
How can artificial intelligence and machine learning benefit your business? Let Google Cloud do the hard work and start taking advantage of advanced AI and ML tools. Dive deep into key solutions to common use cases and gain hands-on experience with data processing, natural language processing, forecasting and prediction as well as scoring points and competing with other players in today's game.
Aujourd'hui, le big data, le machine learning et l'intelligence artificielle sont des thèmes en vogue dans le domaine de l'informatique. Ce sont toutefois des disciplines pointues, pour lesquelles il n'est pas toujours simple de trouver des documents de référence. Heureusement, Google Cloud propose des services conviviaux dédiés, ainsi que ce cours d'introduction, pour vous aider à faire vos premiers pas avec des outils comme BigQuery, l'API Cloud Speech et Video Intelligence.
Cette quête d'introduction se compose d'ateliers pratiques qui vous permettent de vous familiariser avec les outils et services de base de Google Cloud Platform. "GCP Essentials" est la première quête recommandée pour les personnes s'intéressant à Google Cloud. Vous pouvez la suivre sans aucune connaissance (ou presque) du cloud et, une fois la quête terminée, vous disposerez de compétences pratiques qui vous seront utiles pour n'importe quel projet GCP. De l'écriture de lignes de commande Cloud Shell au déploiement de votre première machine virtuelle en passant par l'exécution d'applications sur Kubernetes Engine avec l'équilibrage de charge, "GCP Essentials" constitue une excellente introduction aux fonctionnalités de base de la plate-forme. Des vidéos d'une minute résument les concepts clés de ces ateliers.