Rejoindre Se connecter

Mettez en pratique vos compétences dans la console Google Cloud

Oussama Ben Nasr

Date d'abonnement : 2022

Getting Started with Apache Beam Earned oct. 24, 2023 EDT
Mécanisme d'attention Earned sept. 10, 2023 EDT
Introduction à la génération d'images Earned sept. 10, 2023 EDT
Créer et déployer des solutions de machine learning sur Vertex Earned sept. 10, 2023 EDT
Explorateur de l'IA générative – Vertex AI Earned sept. 8, 2023 EDT
Introduction à Vertex AI Studio Earned sept. 8, 2023 EDT
Generative AI Fundamentals - Français Earned sept. 8, 2023 EDT
Introduction à l'IA responsable Earned sept. 8, 2023 EDT
Présentation de l'IA générative Earned sept. 7, 2023 EDT
Machine Learning Operations (MLOps) : premiers pas Earned sept. 6, 2023 EDT
BigQuery for Data Warehousing Earned août 7, 2023 EDT
Analyzing and Visualizing Data in Looker Earned août 7, 2023 EDT
Data Catalog Fundamentals Earned août 3, 2023 EDT
Créer un maillage de données avec Dataplex Earned août 3, 2023 EDT
Managing Change when Moving to Google Cloud Earned août 2, 2023 EDT
Explorer la transformation des données avec Google Cloud Earned juil. 30, 2023 EDT
Data Lake Modernization on Google Cloud: Data Governance Earned juil. 29, 2023 EDT
Premiers pas avec Pub/Sub Earned juil. 29, 2023 EDT
Data Lake Modernization on Google Cloud: Cloud Composer Earned juil. 29, 2023 EDT
Exploring and Preparing Your Data with BigQuery - Français Earned juil. 26, 2023 EDT
Google Slides Earned juil. 25, 2023 EDT
Présentation des grands modèles de langage Earned juin 20, 2023 EDT
Google Sheets Earned jan. 18, 2023 EST
MongoDB Atlas on Google Cloud Earned déc. 14, 2022 EST
Google Cloud Computing Foundations: Cloud Computing Fundamentals - Français Earned nov. 11, 2022 EST
Traitement des données sans serveur avec Dataflow : développer des pipelines Earned nov. 6, 2022 EST
Create and Manage Cloud Spanner Instances Earned nov. 2, 2022 EDT
Serverless Data Processing with Dataflow: Operations Earned oct. 30, 2022 EDT
Preparing for your Professional Data Engineer Journey Earned oct. 20, 2022 EDT
How Google Does Machine Learning - Français Earned oct. 16, 2022 EDT
Ingénierie des données pour la modélisation prédictive avec BigQuery ML Earned oct. 12, 2022 EDT
Préparer des données pour les API de ML sur Google Cloud Earned oct. 11, 2022 EDT
Traitement des données sans serveur avec Dataflow : principes de base Earned oct. 7, 2022 EDT
Smart Analytics, Machine Learning, and AI on Google Cloud - Français Earned oct. 5, 2022 EDT
Google Cloud Big Data and Machine Learning Fundamentals - Français Earned oct. 5, 2022 EDT
Créer un entrepôt de données avec BigQuery Earned oct. 4, 2022 EDT
Concevoir des systèmes d'analyse de flux résilients sur Google Cloud Earned oct. 1, 2022 EDT
Créer des pipelines de données en batch sur Google Cloud Earned sept. 28, 2022 EDT
Concepts fondamentaux de Google Cloud : infrastructure de base Earned sept. 26, 2022 EDT
Moderniser des lacs de données et des entrepôts de données avec Google Cloud Earned sept. 21, 2022 EDT

Learn how to write and test pipelines with Dataflow and Apache Beam

En savoir plus

Ce cours présente le mécanisme d'attention, une technique efficace permettant aux réseaux de neurones de se concentrer sur des parties spécifiques d'une séquence d'entrée. Vous découvrirez comment fonctionne l'attention et comment l'utiliser pour améliorer les performances de diverses tâches de machine learning, dont la traduction automatique, la synthèse de texte et les réponses aux questions.

En savoir plus

Ce cours présente les modèles de diffusion, une famille de modèles de machine learning qui s'est récemment révélée prometteuse dans le domaine de la génération d'images. Les modèles de diffusion trouvent leur origine dans la physique, et plus précisément dans la thermodynamique. Au cours des dernières années, ils ont gagné en popularité dans la recherche et l'industrie. Ils sont à la base de nombreux modèles et outils Google Cloud avancés de génération d'images. Ce cours vous présente les bases théoriques des modèles de diffusion, et vous explique comment les entraîner et les déployer sur Vertex AI.

En savoir plus

Obtenez un badge de compétence en terminant le cours intermédiaire Créer et déployer des solutions de machine learning sur Vertex. Vous y apprendrez à utiliser la plate-forme Vertex AI de Google Cloud, AutoML et les services d'entraînement personnalisés pour entraîner, évaluer, régler, expliquer et déployer des modèles de machine learning. Ce cours, qui ouvre droit à un badge de compétence, est destiné aux data scientists et aux ingénieurs en machine learning. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.

En savoir plus

Le cours "Explorateur de l'IA générative – Vertex AI" est un ensemble d'ateliers consacrés à l'utilisation de l'IA générative sur Google Cloud. Vous apprendrez à utiliser les modèles de la famille d'API PaLM Vertex AI comme text-bison, chat-bison, et textembedding-gecko. Vous découvrirez également comment rédiger des prompts, quelles bonnes pratiques appliquer, et comment utiliser l'IA générative pour l'idéation, la classification et l'extraction de texte, la création de synthèses, et plus encore. Enfin, vous apprendrez à régler un modèle de fondation à l'aide de l'entraînement personnalisé Vertex AI et à le déployer sur un point de terminaison Vertex AI.

En savoir plus

Ce cours présente Vertex AI Studio, un outil permettant d'interagir avec des modèles d'IA générative, de prototyper des idées commerciales et de les envoyer en production. Au moyen d'un cas d'utilisation immersif, de leçons captivantes et d'un atelier pratique, vous allez découvrir le cycle de vie de la requête au produit. Vous apprendrez également à utiliser Vertex AI Studio pour les applications multimodales Gemini, la conception de requêtes, le prompt engineering (ingénierie des requêtes) et le réglage de modèles. L'objectif est de vous permettre d'exploiter tout le potentiel de l'IA générative dans vos projets avec Vertex AI Studio.

En savoir plus

Suivez les cours Introduction to Generative AI, Introduction to Large Language Models et Introduction to Responsible AI, et obtenez un badge de compétence. Votre réussite au quiz final démontrera que vous comprenez les concepts de base relatifs à l'IA générative. Un badge de compétence est un badge numérique délivré par Google Cloud. Il atteste de votre expertise sur les produits et services Google Cloud. Partagez votre badge de compétence en rendant votre profil public et en l'ajoutant à votre profil sur les réseaux sociaux.

En savoir plus

Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA responsable, souligne son importance et décrit comment Google l'implémente dans ses produits. Il présente également les sept principes de l'IA de Google.

En savoir plus

Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA générative, décrit à quoi elle sert et souligne ce qui la distingue des méthodes de machine learning traditionnel. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.

En savoir plus

Ce cours présente les outils et les bonnes pratiques MLOps pour déployer, évaluer, surveiller et exploiter des systèmes de ML en production sur Google Cloud. Le MLOps est une discipline axée sur le déploiement, le test, la surveillance et l'automatisation des systèmes de ML en production. Les ingénieurs en machine learning utilisent des outils pour améliorer et évaluer en permanence les modèles déployés. Ils collaborent avec des data scientists (ou peuvent occuper ce poste) qui développent des modèles permettant de déployer de manière rapide et rigoureuse les solutions de machine learning les plus performantes.

En savoir plus

Vous voulez créer un entrepôt de données ou l'optimiser ? Découvrez les bonnes pratiques d'extraction, de transformation et de chargement des données dans Google Cloud avec BigQuery. Dans cette série d'ateliers interactifs, vous allez créer votre propre entrepôt de données et l'optimiser en utilisant différents ensembles de données publics à grande échelle de BigQuery. BigQuery est la base de données d'analyse à faible coût de Google, entièrement gérée et qui ne nécessite aucune opération (NoOps). Avec BigQuery, vous pouvez interroger des téraoctets de données sans avoir à gérer d'infrastructure ni faire appel à un administrateur de base de données. Basé sur le langage SQL et le modèle de paiement à l'usage, BigQuery vous permet de vous concentrer sur l'analyse des données pour en dégager des informations pertinentes.

En savoir plus

In this course, you learn how to do the kind of data exploration and analysis in Looker that would formerly be done primarily by SQL developers or analysts. Upon completion of this course, you will be able to leverage Looker's modern analytics platform to find and explore relevant content in your organization’s Looker instance, ask questions of your data, create new metrics as needed, and build and share visualizations and dashboards to facilitate data-driven decision making.

En savoir plus

Data Catalog is deprecated and will be discontinued on January 30, 2026. You can still complete this course if you want to. For steps to transition your Data Catalog users, workloads, and content to Dataplex Catalog, see Transition from Data Catalog to Dataplex Catalog (https://cloud.google.com/dataplex/docs/transition-to-dataplex-catalog). Data Catalog is a fully managed and scalable metadata management service that empowers organizations to quickly discover, understand, and manage all of their data. In this quest you will start small by learning how to search and tag data assets and metadata with Data Catalog. After learning how to build your own tag templates that map to BigQuery table data, you will learn how to build MySQL, PostgreSQL, and SQLServer to Data Catalog Connectors.

En savoir plus

Terminez le cours d'introduction Créer un maillage de données avec Dataplex pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création d'un maillage de données avec Dataplex pour faciliter la sécurité, la gouvernance et la découverte des données sur Google Cloud. Cela comprend l'ajout de tags à des éléments, l'attribution de rôles IAM et l'évaluation de la qualité des données dans Dataplex. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge numérique que que vous pourrez partager avec votre réseau.

En savoir plus

Moving to the cloud creates numerous opportunities to start working in a new way and it empowers the workforce to better collaborate and innovate. But it’s also a big change. Sometimes the success of the change hinges not on the change itself, but on how it’s managed. This course will help people managers to understand some of the key challenges associated with cloud adoption, and provide them with a verified in-the-field framework that will assist them in supporting their teams on the change journey. By addressing the human factor of moving to the cloud, organizations increase their chances of realizing business objectives and investing in their future talent.

En savoir plus

La technologie cloud est une grande source de valeur pour les entreprises. En combinant le potentiel de cette technologie avec celui des données, il est possible de créer encore plus de valeur et d'offrir de nouvelles expériences client. "Explorer la transformation des données avec Google Cloud" vous fait découvrir la valeur que les données peuvent apporter à une entreprise et les façons dont Google Cloud peut les rendre utiles et accessibles. Ce cours fait partie du parcours de formation Cloud Digital Leader. Il a pour but d'aider les participants à évoluer dans leur poste et à façonner l'avenir de leur entreprise.

En savoir plus

Welcome to Data Governance, where we discuss how to implement data governance on Google Cloud.

En savoir plus

Obtenez un badge de compétence en effectuant la quête Premiers pas avec Pub/Sub. Vous y apprendrez à utiliser Pub/Sub depuis la console Cloud, et découvrirez comment les jobs Cloud Scheduler peuvent vous faire gagner du temps et quand Pub/Sub Lite permet de réaliser des économies sur l'ingestion d'événements. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud, et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez cette quête et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.

En savoir plus

Welcome to Cloud Composer, where we discuss how to orchestrate data lake workflows with Cloud Composer.

En savoir plus

Ce cours décrit les problématiques courantes auxquelles se confrontent les analystes de données et explique comment les résoudre à l'aide des outils de big data disponibles sur Google Cloud. Vous découvrirez quelques notions de SQL et apprendrez comment utiliser BigQuery et Dataprep pour analyser et transformer vos ensembles de données. Il s'agit du premier cours de la série "From Data to Insights with Google Cloud". Après l'avoir terminé, inscrivez-vous au cours "Creating New BigQuery Datasets and Visualizing Insights".

En savoir plus

With Google Slides, you can create and present professional presentations for sales, projects, training modules, and much more. Google Slides presentations are stored safely in the cloud. You build presentations right in your web browser—no special software is required. Even better, multiple people can work on your slides at the same time, you can see people’s changes as they make them, and every change is automatically saved. You will learn how to open Google Slides, create a blank presentation, and create a presentation from a template. You will explore themes, layout options, and how to add and format content, and speaker notes in your presentations. You will learn how to enhance your slides by adding tables, images, charts, and more. You will also learn how to use slide transitions and object animations in your presentation for visual effects. We will discuss how to organize slides and explore some of the options, including duplicating and ordering your slides, importi…

En savoir plus

Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce que sont les grands modèles de langage (LLM). Il inclut des cas d'utilisation et décrit comment améliorer les performances des LLM grâce au réglage des requêtes. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.

En savoir plus

In this course we will introduce you to Google Sheets, Google’s cloud-based spreadsheet software, included with Google Workspace. With Google Sheets, you can create and edit spreadsheets directly in your web browser—no special software is required. Multiple people can work simultaneously, you can see people’s changes as they make them, and every change is saved automatically. You will learn how to open Google Sheets, create a blank spreadsheet, and create a spreadsheet from a template. You will add, import, sort, filter and format your data using Google Sheets and learn how to work across different file types. Formulas and functions allow you to make quick calculations and better use your data. We will look at creating a basic formula, using functions, and referencing data. You will also learn how to add a chart to your spreadsheet. Google Sheets spreadsheets are easy to share. We will look at the different ways you can share with others. We will also discuss how to track changes…

En savoir plus

Discover the ease of an integrated multi-cloud database with data services that simplify database deployment and management. Get practical experience using MongoDB Atlas on Google Cloud and unlock the power of a flexible document data model that makes data easier to work with in a global, scalable, fully-managed, and elastic service. Come expecting to learn, Building a Cloud Run application that leverages Atlas App Services to call Cloud Natural Language Processing and carry out sentiment analysis, Running a MongoDB Database in Kubernetes with StatefulSets and Ingesting New Datasets into BigQuery

En savoir plus

Le cours Google Cloud Computing Foundations est destiné aux personnes qui ont peu de connaissances ou d’expérience en cloud computing, voire pas du tout. Il présente de façon détaillée différents concepts (principes de base du cloud, big data et machine learning) et explique dans quels cas utiliser Google Cloud et pourquoi. Au terme de ce cours, les participants sauront expliquer les concepts associés au cloud computing, au big data et au machine learning, et ils auront acquis certaines compétences pratiques. Ce cours fait partie d'une série de cours intitulée Google Cloud Computing Foundations. Les cours doivent être suivis dans l'ordre suivant : Google Cloud Computing Foundations: Cloud Computing Fundamentals - Locales Google Cloud Computing Foundations: Infrastructure in Google Cloud - Locales Google Cloud Computing Foundations: Networking and Security in Google Cloud - Locales Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud…

En savoir plus

Dans ce deuxième volet de la série de cours sur Dataflow, nous allons nous intéresser de plus près au développement de pipelines à l'aide du SDK Beam. Nous allons commencer par passer en revue les concepts d'Apache Beam. Nous allons ensuite parler du traitement des données par flux à l'aide de fenêtres, de filigranes et de déclencheurs. Nous passerons ensuite aux options de sources et de récepteurs dans vos pipelines, aux schémas pour présenter vos données structurées, et nous verrons comment effectuer des transformations avec état à l'aide des API State et Timer. Nous aborderons ensuite les bonnes pratiques qui vous aideront à maximiser les performances de vos pipelines. Vers la fin du cours, nous présentons le langage SQL et les DataFrames pour représenter votre logique métier dans Beam, et nous expliquons comment développer des pipelines de manière itérative à l'aide des notebooks Beam.

En savoir plus

Complete the introductory Create and Manage Cloud Spanner Instances skill badge to demonstrate skills in the following: creating and interacting with Cloud Spanner instances and databases; loading Cloud Spanner databases using various techniques; backing up Cloud Spanner databases; defining schemas and understanding query plans; and deploying a Modern Web App connected to a Cloud Spanner instance.

En savoir plus

In the last installment of the Dataflow course series, we will introduce the components of the Dataflow operational model. We will examine tools and techniques for troubleshooting and optimizing pipeline performance. We will then review testing, deployment, and reliability best practices for Dataflow pipelines. We will conclude with a review of Templates, which makes it easy to scale Dataflow pipelines to organizations with hundreds of users. These lessons will help ensure that your data platform is stable and resilient to unanticipated circumstances.

En savoir plus

This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

En savoir plus

Quelles sont les bonnes pratiques pour implémenter le machine learning sur Google Cloud ? En quoi consiste la plate-forme Vertex AI et comment pouvez-vous l'utiliser pour créer, entraîner et déployer rapidement des modèles de machine learning AutoML sans écrire une seule ligne de code ? Qu'est-ce que le machine learning et quels types de problèmes permet-il de résoudre ? Google aborde le machine learning d'une façon particulière, qui consiste à fournir une plate-forme unifiée pour les ensembles de données gérés, ainsi qu'un magasin de caractéristiques et un moyen de créer, d'entraîner et de déployer des modèles de machine learning sans écrire une seule ligne de code. Il s'agit également de permettre aux utilisateurs d'étiqueter les données et de créer des notebooks Workbench à l'aide de frameworks tels que TensorFlow, Scikit Learn, Pytorch et R. Avec notre plate-forme Vertex AI, il est également possible d'entraîner des modèles personnalisés, de créer des pipelines de composants, …

En savoir plus

Terminez le cours intermédiaire Ingénierie des données pour la modélisation prédictive avec BigQuery ML pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création de pipelines de transformation des données dans BigQuery avec Dataprep by Trifacta ; l'utilisation de Cloud Storage, Dataflow et BigQuery pour créer des workflows ETL (Extract, Transform and Load) ; et la création de modèles de machine learning avec BigQuery ML. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez le cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge numérique que vous pourrez partager avec votre réseau.

En savoir plus

Terminez le cours d'introduction Préparer des données pour les API de ML sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : le nettoyage des données avec Dataprep by Trifacta, l'exécution de pipelines de données dans Dataflow, la création de clusters et l'exécution de jobs Apache Spark dans Dataproc, et l'appel d'API de ML comme l'API Cloud Natural Language, l'API Google Cloud Speech-to-Text et l'API Video Intelligence. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud, et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.

En savoir plus

Ce cours est le premier d'une série en trois volets sur le traitement des données sans serveur avec Dataflow. Dans ce premier cours, nous allons commencer par rappeler ce qu'est Apache Beam et sa relation avec Dataflow. Ensuite, nous aborderons la vision d'Apache Beam et les avantages de son framework de portabilité, qui permet aux développeurs d'utiliser le langage de programmation et le backend d'exécution de leur choix. Nous vous montrerons aussi comment séparer le calcul du stockage et économiser de l'argent grâce à Dataflow, puis nous examinerons les interactions entre les outils de gestion de l'identification et des accès avec vos pipelines Dataflow. Enfin, nous verrons comment implémenter le modèle de sécurité adapté à votre cas d'utilisation sur Dataflow.

En savoir plus

Intégrer le machine learning à des pipelines de données renforce la capacité à dégager des insights des données. Ce cours passera en revue plusieurs façons d'intégrer le machine learning à des pipelines de données sur Google Cloud. Vous découvrirez AutoML pour les cas ne nécessitant que peu de personnalisation (voire aucune), ainsi que Notebooks et BigQuery ML pour les situations qui requièrent des capacités de machine learning plus adaptées. Enfin, vous apprendrez à utiliser des solutions de machine learning en production avec Vertex AI.

En savoir plus

Ce cours présente les produits et services Google Cloud pour le big data et le machine learning compatibles avec le cycle de vie "des données à l'IA". Il explore les processus, défis et avantages liés à la création d'un pipeline de big data et de modèles de machine learning avec Vertex AI sur Google Cloud.

En savoir plus

Terminez le cours intermédiaire Créer un entrepôt de données avec BigQuery pour recevoir un badge démontrant vos compétences dans les domaines suivants : la jointure de données pour créer des tables, la résolution des problèmes liés aux jointures, l'ajout de données avec des unions, la création de tables partitionnées par date, et l'utilisation d'objets JSON, ARRAY et STRUCT dans BigQuery. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud, et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge

En savoir plus

Le traitement de flux de données est une pratique de plus en plus courante, car elle permet aux entreprises d'obtenir des métriques sur leurs activités commerciales en temps réel. Ce cours explique comment créer des pipelines de flux de données sur Google Cloud et présente Pub/Sub, une solution qui permet de gérer des données de flux entrants. Par ailleurs, vous verrez comment appliquer des agrégations et des transformations à des flux de données à l'aide de Dataflow, mais aussi comment stocker des enregistrements traités dans BigQuery ou Bigtable pour qu'ils puissent être analysés. Les participants mettront en pratique les connaissances qu'ils auront acquises en créant des composants de pipelines de flux de données sur Google Cloud à l'aide de Qwiklabs.

En savoir plus

Les pipelines de données s'inscrivent généralement dans l'un des paradigmes EL (extraction et chargement), ELT (extraction, chargement et transformation) ou ETL (extraction, transformation et chargement). Ce cours indique quel paradigme utiliser pour le traitement de données par lot en fonction du contexte. Il présente également plusieurs technologies Google Cloud de transformation des données, y compris BigQuery, l'exécution de Spark sur Dataproc, les graphiques de pipelines dans Cloud Data Fusion et le traitement des données sans serveur avec Dataflow. Les participants mettront en pratique les connaissances qu'ils auront acquises en créant des composants de pipelines de données sur Google Cloud à l'aide de Qwiklabs.

En savoir plus

Concepts fondamentaux de Google Cloud : Core Infrastructure présente les concepts et les termes à connaître pour utiliser Google Cloud. À travers des vidéos et des ateliers pratiques, il décrit et compare la plupart des services Google Cloud de calcul et de stockage, ainsi que des outils importants de gestion des ressources et des règles.

En savoir plus

Les lacs de données et les entrepôts de données sont les deux principaux composants des pipelines de données. Ce cours présente des cas d'utilisation de chaque type de stockage, ainsi que les détails techniques des solutions de lacs et d'entrepôts de données disponibles sur Google Cloud. Il décrit également le rôle des ingénieurs de données et les avantages d'un pipeline de données réussi sur les opérations commerciales, avant d'expliquer pourquoi il est important de procéder à l'ingénierie des données dans un environnement cloud. Il s'agit du premier cours de la série "Ingénierie des données sur Google Cloud". Après l'avoir terminé, inscrivez-vous au cours "Créer des pipelines de données en batch sur Google Cloud".

En savoir plus