Rejoindre Se connecter

Mettez en pratique vos compétences dans la console Google Cloud

Muhammad Helmi Jamil

Date d'abonnement : 2022

Ligue d'Argent

9535 points
Introduction à Vertex AI Studio Earned mai 20, 2024 EDT
Créer des modèles de création de légendes pour les images Earned mai 19, 2024 EDT
Modèles Transformer et modèle BERT Earned mai 19, 2024 EDT
Architecture encodeur/décodeur Earned mai 19, 2024 EDT
Mécanisme d'attention Earned mai 18, 2024 EDT
Introduction à la génération d'images Earned mai 18, 2024 EDT
Intégrer des applications avec Gemini 1.0 Pro sur Google Cloud Earned mai 18, 2024 EDT
Créer une infrastructure avec Terraform sur Google Cloud Earned mai 16, 2024 EDT
Ingénierie des données pour la modélisation prédictive avec BigQuery ML Earned juin 26, 2022 EDT
Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud Earned juin 25, 2022 EDT
Google Cloud Computing Foundations: Networking and Security in Google Cloud - Locales Earned juin 25, 2022 EDT
[DEPRECATED] Google Cloud Computing Foundations: Infrastructure in Google Cloud - Locales Earned juin 24, 2022 EDT
Google Cloud Computing Foundations: Cloud Computing Fundamentals - Français Earned juin 24, 2022 EDT
Créer une infrastructure avec Terraform sur Google Cloud Earned juin 23, 2022 EDT

Ce cours présente Vertex AI Studio, un outil permettant d'interagir avec des modèles d'IA générative, de prototyper des idées commerciales et de les envoyer en production. Au moyen d'un cas d'utilisation immersif, de leçons captivantes et d'un atelier pratique, vous allez découvrir le cycle de vie de la requête au produit. Vous apprendrez également à utiliser Vertex AI Studio pour les applications multimodales Gemini, la conception de requêtes, le prompt engineering (ingénierie des requêtes) et le réglage de modèles. L'objectif est de vous permettre d'exploiter tout le potentiel de l'IA générative dans vos projets avec Vertex AI Studio.

En savoir plus

Dans ce cours, vous allez apprendre à créer un modèle de sous-titrage d'images à l'aide du deep learning. Vous découvrirez les différents composants de ce type de modèle, comme l'encodeur et le décodeur, et comment l'entraîner et l'évaluer. À la fin du cours, vous serez en mesure de créer vos propres modèles de sous-titrage d'images et de les utiliser pour générer des sous-titres pour des images.

En savoir plus

Ce cours présente l'architecture Transformer et le modèle BERT (Bidirectional Encoder Representations from Transformers). Vous découvrirez quels sont les principaux composants de l'architecture Transformer, tels que le mécanisme d'auto-attention, et comment ils sont utilisés pour créer un modèle BERT. Vous verrez également les différentes tâches pour lesquelles le modèle BERT peut être utilisé, comme la classification de texte, les questions-réponses et l'inférence en langage naturel. Ce cours dure environ 45 minutes.

En savoir plus

Ce cours offre un aperçu de l'architecture encodeur/décodeur, une architecture de machine learning performante souvent utilisée pour les tâches "seq2seq", telles que la traduction automatique, la synthèse de texte et les questions-réponses. Vous découvrirez quels sont les principaux composants de l'architecture encodeur/décodeur, et comment entraîner et exécuter ces modèles. Dans le tutoriel d'atelier correspondant, vous utiliserez TensorFlow pour coder une implémentation simple de cette architecture afin de générer un poème en partant de zéro.

En savoir plus

Ce cours présente le mécanisme d'attention, une technique efficace permettant aux réseaux de neurones de se concentrer sur des parties spécifiques d'une séquence d'entrée. Vous découvrirez comment fonctionne l'attention et comment l'utiliser pour améliorer les performances de diverses tâches de machine learning, dont la traduction automatique, la synthèse de texte et les réponses aux questions.

En savoir plus

Ce cours présente les modèles de diffusion, une famille de modèles de machine learning qui s'est récemment révélée prometteuse dans le domaine de la génération d'images. Les modèles de diffusion trouvent leur origine dans la physique, et plus précisément dans la thermodynamique. Au cours des dernières années, ils ont gagné en popularité dans la recherche et l'industrie. Ils sont à la base de nombreux modèles et outils Google Cloud avancés de génération d'images. Ce cours vous présente les bases théoriques des modèles de diffusion, et vous explique comment les entraîner et les déployer sur Vertex AI.

En savoir plus

Dans ce bref cours consacré à l'intégration d'applications avec les modèles Gemini 1.0 Pro sur Google Cloud, vous découvrirez l'API Gemini et ses modèles d'IA générative. Vous apprendrez également à accéder aux modèles Gemini 1.0 Pro et Gemini 1.0 Pro Vision à partir du code. Enfin, vous testerez les capacités des modèles avec des requêtes contenant du texte, des images et des vidéos à partir d'une application.

En savoir plus

Terminez le cours intermédiaire Créer une infrastructure avec Terraform sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : les principes d'Infrastructure as Code (IaC) avec Terraform, le provisionnement et la gestion des ressources Google Cloud avec des configurations Terraform, la gestion efficace des états (local et distant) et la modularisation du code Terraform à des fins de réutilisabilité et d'organisation. Les badges de compétence valident vos connaissances sur des produits spécifiques lors d'ateliers pratiques et d'évaluations. Décrochez un badge en suivant un cours ou accédez directement à l'atelier challenge correspondant pour l'obtenir dès aujourd'hui. Les badges attestent de votre niveau de maîtrise, améliorent votre profil professionnel et, par conséquent, vous permettent d'accroître vos opportunités de carrière. Accédez à votre profil pour retrouver les badges que vous avez obtenus.

En savoir plus

Terminez le cours intermédiaire Ingénierie des données pour la modélisation prédictive avec BigQuery ML pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création de pipelines de transformation des données dans BigQuery avec Dataprep by Trifacta ; l'utilisation de Cloud Storage, Dataflow et BigQuery pour créer des workflows ETL (Extract, Transform and Load) ; et la création de modèles de machine learning avec BigQuery ML. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez le cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge numérique que vous pourrez partager avec votre réseau.

En savoir plus

The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This final course in the series reviews managed big data services, machine learning and its value, and how to demonstrate your skill set in Google Cloud further by earning Skill Badges.

En savoir plus

Le cours Google Cloud Computing Foundations est destiné aux personnes qui ont peu de connaissances ou d’expérience en cloud computing, voire pas du tout. Il présente de façon détaillée différents concepts (principes de base du cloud, big data et machine learning) et explique dans quels cas utiliser Google Cloud et pourquoi. Au terme de ce cours, les participants sauront expliquer les concepts associés au cloud computing, au big data et au machine learning, et ils auront acquis certaines compétences pratiques. Ce cours fait partie d'une série de cours intitulée Google Cloud Computing Foundations. Les cours doivent être suivis dans l'ordre suivant : Google Cloud Computing Foundations: Cloud Computing Fundamentals - Locales Google Cloud Computing Foundations: Infrastructure in Google Cloud - Locales Google Cloud Computing Foundations: Networking and Security in Google Cloud - Locales Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud -…

En savoir plus

Le cours Google Cloud Computing Foundations est destiné aux personnes qui ont peu de connaissances ou d’expérience en cloud computing, voire pas du tout. Il présente de façon détaillée différents concepts (principes de base du cloud, big data et machine learning) et explique dans quels cas utiliser Google Cloud et pourquoi. Au terme de ce cours, les participants sauront expliquer les concepts associés au cloud computing, au big data et au machine learning, et ils auront acquis certaines compétences pratiques. Ce cours fait partie d'une série de cours intitulée Google Cloud Computing Foundations. Les cours doivent être suivis dans l'ordre suivant : Google Cloud Computing Foundations: Cloud Computing Fundamentals - Locales Google Cloud Computing Foundations: Infrastructure in Google Cloud - Locales Google Cloud Computing Foundations: Networking and Security in Google Cloud - Locales Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud -…

En savoir plus

Le cours Google Cloud Computing Foundations est destiné aux personnes qui ont peu de connaissances ou d’expérience en cloud computing, voire pas du tout. Il présente de façon détaillée différents concepts (principes de base du cloud, big data et machine learning) et explique dans quels cas utiliser Google Cloud et pourquoi. Au terme de ce cours, les participants sauront expliquer les concepts associés au cloud computing, au big data et au machine learning, et ils auront acquis certaines compétences pratiques. Ce cours fait partie d'une série de cours intitulée Google Cloud Computing Foundations. Les cours doivent être suivis dans l'ordre suivant : Google Cloud Computing Foundations: Cloud Computing Fundamentals - Locales Google Cloud Computing Foundations: Infrastructure in Google Cloud - Locales Google Cloud Computing Foundations: Networking and Security in Google Cloud - Locales Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud…

En savoir plus

Terminez le cours intermédiaire Créer une infrastructure avec Terraform sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : les principes d'Infrastructure as Code (IaC) avec Terraform, le provisionnement et la gestion des ressources Google Cloud avec des configurations Terraform, la gestion efficace des états (local et distant) et la modularisation du code Terraform à des fins de réutilisabilité et d'organisation. Les badges de compétence valident vos connaissances sur des produits spécifiques lors d'ateliers pratiques et d'évaluations. Décrochez un badge en suivant un cours ou accédez directement à l'atelier challenge correspondant pour l'obtenir dès aujourd'hui. Les badges attestent de votre niveau de maîtrise, améliorent votre profil professionnel et, par conséquent, vous permettent d'accroître vos opportunités de carrière. Accédez à votre profil pour retrouver les badges que vous avez obtenus.

En savoir plus