Rejoindre Se connecter

Mettez en pratique vos compétences dans la console Google Cloud

Farhan Malik

Date d'abonnement : 2020

Présentation de l'IA et du machine learning sur Google Cloud Earned juil. 31, 2024 EDT
Build and Deploy a Generative AI solution using a RAG framework Earned juin 22, 2024 EDT
Document AI: Building a Custom Document Extractor Earned juin 10, 2024 EDT
IA responsable pour les développeurs : équité et biais Earned juin 5, 2024 EDT
IA responsable pour les développeurs : interprétabilité et transparence Earned juin 4, 2024 EDT
Machine Learning Operations (MLOps) pour l'IA générative Earned juin 4, 2024 EDT
Custom Search with Embeddings in Vertex AI Earned juin 3, 2024 EDT
Implementing Generative AI with Vertex AI Earned juin 1, 2024 EDT
Recherche vectorielle et embeddings Earned mai 30, 2024 EDT
Search with AI Applications Earned mai 30, 2024 EDT
Develop Advanced Enterprise Search and Conversation Applications Earned mai 29, 2024 EDT
Text Prompt Engineering Techniques Earned mai 20, 2024 EDT
Integrate Vertex AI Search and Conversation into Voice and Chat Apps Earned mai 16, 2024 EDT
Concepts fondamentaux de Google Cloud : infrastructure de base Earned nov. 10, 2023 EST
Preparing for your Professional Cloud Architect Journey Earned oct. 25, 2023 EDT
La transformation numérique avec Google Cloud Earned août 29, 2023 EDT
IA responsable : appliquer les principes concernant l'IA avec Google Cloud Earned juil. 31, 2023 EDT
Generative AI Fundamentals Earned juil. 27, 2023 EDT
Introduction à Vertex AI Studio Earned juil. 26, 2023 EDT
Créer des modèles de création de légendes pour les images Earned juil. 26, 2023 EDT
Modèles Transformer et modèle BERT Earned juil. 26, 2023 EDT
Architecture encodeur/décodeur Earned juin 20, 2023 EDT
Introduction à la génération d'images Earned juin 19, 2023 EDT
Generative AI Fundamentals - Français Earned juin 19, 2023 EDT
Introduction à l'IA responsable Earned juin 19, 2023 EDT
Mécanisme d'attention Earned juin 19, 2023 EDT
Présentation des grands modèles de langage Earned juin 6, 2023 EDT
Présentation de l'IA générative Earned mai 17, 2023 EDT

Ce cours présente les solutions d'IA et de machine learning (ML) de Google Cloud permettant de développer des projets d'IA prédictive et générative. Il décrit les technologies, produits et outils disponibles tout au long du cycle de vie des données à l'IA, en englobant les éléments de base, le développement et les solutions d'IA. Son but est d'aider les data scientists, les développeurs d'IA et les ingénieurs en ML à améliorer leurs compétences et connaissances par le biais d'expériences d'apprentissage captivantes et d'exercices pratiques.

En savoir plus

Demonstrate your ability to implement updated prompt engineering techniques and utilize several of Gemini's key capacilities including multimodal understanding and function calling. Then integrate generative AI into a RAG application deployed to Cloud Run. This course contains labs that are to be used as a test environment. They are deployed to test your understanding as a learner with a limited scope. These technologies can be used with fewer limitations in a real world environment.

En savoir plus

This workload aims to upskill Google Cloud partners to perform specific tasks associated with building a Custom Doc Extractor using the Google Cloud AI solution. The following will be addressed: Service: Document AI Task: Extract fields Processors: Custom Document Extractor and Document Splitter Prediction: Using Endpoint to programmatically extract fields

En savoir plus

Ce cours présente le concept d'IA responsable et les principes associés. Il met en avant des techniques permettant d'identifier des données équitables ou biaisées, et de limiter les biais lors de l'utilisation de l'IA/du ML. Vous découvrirez des méthodes pratiques et des outils pour mettre en place de bonnes pratiques d'IA responsable à l'aide des produits Google Cloud et des outils Open Source.

En savoir plus

Ce cours présente les concepts d'interprétabilité et de transparence de l'IA. Il explique en quoi la transparence de l'IA est importante pour les développeurs et les ingénieurs. Il explore des méthodes et des outils pratiques permettant d'atteindre l'interprétabilité et la transparence des modèles d'IA et des données.

En savoir plus

Dans ce cours, vous allez acquérir les connaissances et les outils nécessaires pour identifier les problématiques uniques auxquelles les équipes MLOps sont confrontées lors du déploiement et de la gestion de modèles d'IA générative. Vous verrez également en quoi Vertex AI permet aux équipes d'IA de simplifier les processus MLOps et de faire aboutir leurs projets d'IA générative.

En savoir plus

This course explores Google Cloud technologies to create and generate embeddings. Embeddings are numerical representations of text, images, video and audio, and play a pivotal role in many tasks that involve the identification of similar items, like Google searches, online shopping recommendations, and personalized music suggestions. Specifically, you’ll use embeddings for tasks like classification, outlier detection, clustering and semantic search. You’ll combine semantic search with the text generation capabilities of an LLM to build Retrieval Augmented Generation (RAG) systems and question-answering solutions, on your own proprietary data using Google Cloud’s Vertex AI.

En savoir plus

This course will help ML Engineers, Developers, and Data Scientists implement Large Language Models for Generative AI use cases with Vertex AI. The first two modules of this course contain links to videos and prerequisite course materials that will build your knowledge foundation in Generative AI. Please do not skip these modules. The advanced modules in this course assume you have completed these earlier modules.

En savoir plus

Avec ce cours, explorez les technologies de recherche, les outils et les applications optimisés par l'IA. Découvrez la recherche sémantique, qui utilise les embeddings vectoriels (ou "plongements vectoriels"), la recherche hybride, qui combine les approches sémantique et par mots-clés, et la génération augmentée par récupération (RAG), qui réduit les hallucinations générées par l'IA en agissant comme un agent ancré. Enfin, acquérez une expérience pratique de Vertex AI Vector Search afin de créer votre moteur de recherche intelligent.

En savoir plus

(Previously named "Developing apps with Vertex AI Agent Builder: Search". Please note there maybe instances in this course where previous product names and titles are used) Enterprises of all sizes have trouble making their information readily accessible to employees and customers alike. Internal documentation is frequently scattered across wikis, file shares, and databases. Similarly, consumer-facing sites often offer a vast selection of products, services, and information, but customers are frustrated by ineffective site search and navigation capabilities. This course teaches you to use AI Applications to integrate enterprise-grade generative AI search.

En savoir plus

In this course, you'll use text embeddings for tasks like classification, outlier detection, text clustering and semantic search. You'll combine semantic search with the text generation capabilities of an LLM to build Retrieval Augmented Generation (RAG) solutions, such as for question-answering systems, using Google Cloud's Vertex AI and Google Cloud databases.

En savoir plus

Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.

En savoir plus

This course on Integrate Vertex AI Search and Conversation into Voice and Chat Apps is composed of a set of labs to give you a hands on experience to interacting with new Generative AI technologies. You will learn how to create end-to-end search and conversational experiences by following examples. These technologies complement predefined intent-based chat experiences created in Dialogflow with LLM-based, generative answers that can be based on your own data. Also, they allow you to porvide enterprise-grade search experiences for internal and external websites to search documents, structure data and public websites.

En savoir plus

"Concepts fondamentaux de Google Cloud : infrastructure de base" présente les concepts et les termes à connaître pour utiliser Google Cloud. À travers des vidéos et des ateliers pratiques, il décrit et compare la plupart des services Google Cloud de calcul et de stockage, ainsi que des outils importants de gestion des ressources et des règles.

En savoir plus

This course helps learners create a study plan for the PCA (Professional Cloud Architect) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

En savoir plus

La technologie cloud et la transformation numérique suscitent beaucoup d'enthousiasme, mais elles génèrent aussi souvent beaucoup de questions laissées sans réponse. Par exemple : Qu'est-ce que la technologie cloud ? Qu'entend-on par transformation numérique ? Que peut vous apporter la technologie cloud ? Et par où commencer ? Si vous vous êtes déjà posé une de ces questions, vous êtes au bon endroit. Ce cours offre un aperçu des opportunités et des défis que les entreprises peuvent rencontrer lors de leur transformation numérique. Si vous souhaitez découvrir les technologies cloud afin de pouvoir exceller dans votre rôle et contribuer à bâtir l'avenir de votre entreprise, ce cours d'introduction sur la transformation numérique est pour vous. Il fait partie du parcours de formation Cloud Digital Leader.

En savoir plus

Avec l'essor de l'utilisation de l'intelligence artificielle et du machine learning en entreprise, il est de plus en plus important de développer ces technologies de manière responsable. Pour beaucoup, le véritable défi réside dans la mise en pratique de l'IA responsable, qui s'avère bien plus complexe que dans la théorie. Si vous souhaitez découvrir comment opérationnaliser l'IA responsable dans votre organisation, ce cours est fait pour vous. Dans ce cours, vous allez apprendre comment Google Cloud procède actuellement, en s'appuyant sur des bonnes pratiques et les enseignements tirés, afin de vous fournir un framework pour élaborer votre propre approche d'IA responsable.

En savoir plus

Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.

En savoir plus

Ce cours présente Vertex AI Studio, un outil permettant d'interagir avec des modèles d'IA générative, de prototyper des idées commerciales et de les envoyer en production. Au moyen d'un cas d'utilisation immersif, de leçons captivantes et d'un atelier pratique, vous allez découvrir le cycle de vie de la requête au produit. Vous apprendrez également à utiliser Vertex AI Studio pour les applications multimodales Gemini, la conception de requêtes, le prompt engineering (ingénierie des requêtes) et le réglage de modèles. L'objectif est de vous permettre d'exploiter tout le potentiel de l'IA générative dans vos projets avec Vertex AI Studio.

En savoir plus

Dans ce cours, vous allez apprendre à créer un modèle de sous-titrage d'images à l'aide du deep learning. Vous découvrirez les différents composants de ce type de modèle, comme l'encodeur et le décodeur, et comment l'entraîner et l'évaluer. À la fin du cours, vous serez en mesure de créer vos propres modèles de sous-titrage d'images et de les utiliser pour générer des sous-titres pour des images.

En savoir plus

Ce cours présente l'architecture Transformer et le modèle BERT (Bidirectional Encoder Representations from Transformers). Vous découvrirez quels sont les principaux composants de l'architecture Transformer, tels que le mécanisme d'auto-attention, et comment ils sont utilisés pour créer un modèle BERT. Vous verrez également les différentes tâches pour lesquelles le modèle BERT peut être utilisé, comme la classification de texte, les questions-réponses et l'inférence en langage naturel. Ce cours dure environ 45 minutes.

En savoir plus

Ce cours offre un aperçu de l'architecture encodeur/décodeur, une architecture de machine learning performante souvent utilisée pour les tâches "seq2seq", telles que la traduction automatique, la synthèse de texte et les questions-réponses. Vous découvrirez quels sont les principaux composants de l'architecture encodeur/décodeur, et comment entraîner et exécuter ces modèles. Dans le tutoriel d'atelier correspondant, vous utiliserez TensorFlow pour coder une implémentation simple de cette architecture afin de générer un poème en partant de zéro.

En savoir plus

Ce cours présente les modèles de diffusion, une famille de modèles de machine learning qui s'est récemment révélée prometteuse dans le domaine de la génération d'images. Les modèles de diffusion trouvent leur origine dans la physique, et plus précisément dans la thermodynamique. Au cours des dernières années, ils ont gagné en popularité dans la recherche et l'industrie. Ils sont à la base de nombreux modèles et outils Google Cloud avancés de génération d'images. Ce cours vous présente les bases théoriques des modèles de diffusion, et vous explique comment les entraîner et les déployer sur Vertex AI.

En savoir plus

Suivez les cours Introduction to Generative AI, Introduction to Large Language Models et Introduction to Responsible AI, et obtenez un badge de compétence. Votre réussite au quiz final démontrera que vous comprenez les concepts de base relatifs à l'IA générative. Un badge de compétence est un badge numérique délivré par Google Cloud. Il atteste de votre expertise sur les produits et services Google Cloud. Partagez votre badge de compétence en rendant votre profil public et en l'ajoutant à votre profil sur les réseaux sociaux.

En savoir plus

Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA responsable, souligne son importance et décrit comment Google l'implémente dans ses produits. Il présente également les sept principes de l'IA de Google.

En savoir plus

Ce cours présente le mécanisme d'attention, une technique efficace permettant aux réseaux de neurones de se concentrer sur des parties spécifiques d'une séquence d'entrée. Vous découvrirez comment fonctionne l'attention et comment l'utiliser pour améliorer les performances de diverses tâches de machine learning, dont la traduction automatique, la synthèse de texte et les réponses aux questions.

En savoir plus

Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce que sont les grands modèles de langage (LLM). Il inclut des cas d'utilisation et décrit comment améliorer les performances des LLM grâce au réglage des requêtes. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.

En savoir plus

Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA générative, décrit à quoi elle sert et souligne ce qui la distingue des méthodes de machine learning traditionnel. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.

En savoir plus