Partecipa Accedi

Applica le tue competenze nella console Google Cloud

Manpreet Bhatti

Membro dal giorno 2019

Campionato Diamante

25522 punti
AI responsabile per sviluppatori: privacy e sicurezza Earned ago 23, 2025 EDT
AI responsabile per sviluppatori: interpretabilità e trasparenza Earned ago 23, 2025 EDT
AI responsabile per sviluppatori: equità e bias Earned ago 23, 2025 EDT
Create Generative AI Apps on Google Cloud Earned ago 22, 2025 EDT
DEPRECATED Build and Deploy Machine Learning Solutions on Vertex AI Earned ago 22, 2025 EDT
Machine Learning Operations (MLOps) with Vertex AI: Model Evaluation Earned ago 20, 2025 EDT
Machine Learning Operations (MLOps) for Generative AI Earned ago 19, 2025 EDT
Introduction to Large Language Models - Italiano Earned ago 19, 2025 EDT
Introduction to Generative AI - Italiano Earned ago 19, 2025 EDT
Machine Learning Operations (MLOps) with Vertex AI: Manage Features Earned ago 19, 2025 EDT
Machine Learning Operations (MLOps): Getting Started Earned ago 18, 2025 EDT
Production Machine Learning Systems Earned ago 18, 2025 EDT
Professional Machine Learning Engineer Study Guide Earned ago 3, 2025 EDT
Crea, addestra ed esegui il deployment di modelli ML tramite Keras su Google Cloud Earned nov 8, 2024 EST
Feature engineering Earned ott 22, 2024 EDT
Engineer Data for Predictive Modeling with BigQuery ML Earned ott 16, 2024 EDT
Create ML Models with BigQuery ML Earned ott 14, 2024 EDT
Working with Notebooks in Vertex AI Earned ott 13, 2024 EDT
Prepara i dati per le API ML su Google Cloud Earned ott 13, 2024 EDT
Launching into Machine Learning - Italiano Earned set 28, 2024 EDT
Introduzione all'AI e al machine learning su Google Cloud Earned set 7, 2024 EDT
Google Cloud Essentials Earned ott 5, 2019 EDT

Questo corso introduce argomenti importanti relativi alla privacy e alla sicurezza dell'AI. Esplora metodi e strumenti pratici per implementare le pratiche consigliate per la privacy e la sicurezza dell'AI utilizzando gli strumenti open source e i prodotti Google Cloud.

Scopri di più

Questo corso introduce i concetti di interpretabilità e la trasparenza dell'AI. Parla dell'importanza della trasparenza dell'AI per sviluppatori ed engineer. Illustra metodi e strumenti pratici per aiutare a raggiungere interpretabilità e trasparenza sia nei dati che nei modelli di AI.

Scopri di più

Questo corso introduce i concetti di AI responsabile e i principi dell'AI. Tratta le tecniche per identificare sostanzialmente l'equità e i bias e mitigare i bias nelle pratiche di AI/ML. Illustra metodi e strumenti pratici per implementare le best practice dell'AI responsabile utilizzando gli strumenti open source e i prodotti Google Cloud.

Scopri di più

Generative AI applications can create new user experiences that were nearly impossible before the invention of large language models (LLMs). As an application developer, how can you use generative AI to build engaging, powerful apps on Google Cloud? In this course, you'll learn about generative AI applications and how you can use prompt design and retrieval augmented generation (RAG) to build powerful applications using LLMs. You'll learn about a production-ready architecture that can be used for generative AI applications and you'll build an LLM and RAG-based chat application.

Scopri di più

Earn the intermediate skill badge by completing the Build and Deploy Machine Learning Solutions on Vertex AI skill badge course, where you learn how to use Google Cloud's Vertex AI platform, AutoML, and custom training services to train, evaluate, tune, explain, and deploy machine learning models.

Scopri di più

This course equips machine learning practitioners with the essential tools, techniques, and best practices for evaluating both generative and predictive AI models. Model evaluation is a critical discipline for ensuring that ML systems deliver reliable, accurate, and high-performing results in production. Participants will gain a deep understanding of various evaluation metrics, methodologies, and their appropriate application across different model types and tasks. The course will emphasize the unique challenges posed by generative AI models and provide strategies for tackling them effectively. By leveraging Google Cloud's Vertex AI platform, participants will learn how to implement robust evaluation processes for model selection, optimization, and continuous monitoring.

Scopri di più

This course is dedicated to equipping you with the knowledge and tools needed to uncover the unique challenges faced by MLOps teams when deploying and managing Generative AI models, and exploring how Vertex AI empowers AI teams to streamline MLOps processes and achieve success in Generative AI projects.

Scopri di più

Questo è un corso di microlearning di livello introduttivo che esplora cosa sono i modelli linguistici di grandi dimensioni (LLM), i casi d'uso in cui possono essere utilizzati e come è possibile utilizzare l'ottimizzazione dei prompt per migliorare le prestazioni dei modelli LLM. Descrive inoltre gli strumenti Google per aiutarti a sviluppare le tue app Gen AI.

Scopri di più

Questo è un corso di microlearning di livello introduttivo volto a spiegare cos'è l'AI generativa, come viene utilizzata e in che modo differisce dai tradizionali metodi di machine learning. Descrive inoltre gli strumenti Google che possono aiutarti a sviluppare le tue app Gen AI.

Scopri di più

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Learners will get hands-on practice using Vertex AI Feature Store's streaming ingestion at the SDK layer.

Scopri di più

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

Scopri di più

This course covers how to implement the various flavors of production ML systems— static, dynamic, and continuous training; static and dynamic inference; and batch and online processing. You delve into TensorFlow abstraction levels, the various options for doing distributed training, and how to write distributed training models with custom estimators. This is the second course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Image Understanding with TensorFlow on Google Cloud course.

Scopri di più

This course helps learners create a study plan for the PMLE (Professional Machine Learning Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

Scopri di più

Questo corso tratta la creazione di modelli ML con TensorFlow e Keras, il miglioramento dell'accuratezza dei modelli ML e la scrittura di modelli ML per l'uso su larga scala.

Scopri di più

Questo corso illustra i vantaggi dell'utilizzo di Vertex AI Feature Store, come migliorare l'accuratezza dei modelli di ML e come trovare le colonne di dati che forniscono le caratteristiche più utili. Il corso include inoltre contenuti e lab sul feature engineering utilizzando BigQuery ML, Keras e TensorFlow.

Scopri di più

Complete the intermediate Engineer Data for Predictive Modeling with BigQuery ML skill badge to demonstrate skills in the following: building data transformation pipelines to BigQuery using Dataprep by Trifacta; using Cloud Storage, Dataflow, and BigQuery to build extract, transform, and load (ETL) workflows; and building machine learning models using BigQuery ML.

Scopri di più

Complete the intermediate Create ML Models with BigQuery ML skill badge to demonstrate skills in creating and evaluating machine learning models with BigQuery ML to make data predictions.

Scopri di più

This course is an introduction to Vertex AI Notebooks, which are Jupyter notebook-based environments that provide a unified platform for the entire machine learning workflow, from data preparation to model deployment and monitoring. The course covers the following topics: (1) The different types of Vertex AI Notebooks and their features and (2) How to create and manage Vertex AI Notebooks.

Scopri di più

Ottieni il corso intermedio con badge delle competenze Prepara i dati per le API ML su Google Cloud per dimostrare le tue competenze nei seguenti ambiti: pulizia dei dati con Dataprep di Trifacta, esecuzione delle pipeline di dati in Dataflow, creazione dei cluster ed esecuzione dei job Apache Spark in Dataproc e richiamo delle API ML tra cui l'API Cloud Natural Language, l'API Google Cloud Speech-to-Text e l'API Video Intelligence. Un badge delle competenze è un badge digitale esclusivo rilasciato da Google Cloud come riconoscimento della tua competenza nell'uso di prodotti e servizi Google Cloud dopo aver messo alla prova la tua capacità di applicare le tue conoscenze in un ambiente interattivo pratico. Completa questo corso con badge delle competenze e il Challenge Lab finale di valutazione per ricevere un badge delle competenze da condividere con la tua rete.

Scopri di più

Il corso inizia con una discussione sui dati: come migliorare la qualità dei dati ed eseguire analisi esplorative dei dati. Descriveremo Vertex AI AutoML e come creare, addestrare ed eseguire il deployment di un modello di ML senza scrivere una sola riga di codice. Comprenderai i vantaggi di Big Query ML. Discuteremo quindi di come ottimizzare un modello di machine learning (ML) e di come la generalizzazione e il campionamento possano aiutare a valutare la qualità dei modelli di ML per l'addestramento personalizzato.

Scopri di più

Questo corso presenta le offerte di intelligenza artificiale (AI) e machine learning (ML) su Google Cloud per la creazione di progetti di AI predittiva e generativa. Esplora le tecnologie, i prodotti e gli strumenti disponibili durante tutto il ciclo di vita data-to-AI, includendo le basi, lo sviluppo e le soluzioni di AI. Ha lo scopo di aiutare data scientist, sviluppatori di AI e ML engineer a migliorare le proprie abilità e conoscenze attraverso attività di apprendimento coinvolgenti ed esercizi pratici.

Scopri di più

In this introductory-level course, you get hands-on practice with the Google Cloud’s fundamental tools and services. Optional videos are provided to provide more context and review for the concepts covered in the labs. Google Cloud Essentials is a recommendeded first course for the Google Cloud learner - you can come in with little or no prior cloud knowledge, and come out with practical experience that you can apply to your first Google Cloud project. From writing Cloud Shell commands and deploying your first virtual machine, to running applications on Kubernetes Engine or with load balancing, Google Cloud Essentials is a prime introduction to the platform’s basic features.

Scopri di più