加入 登录

在 Google Cloud 控制台中运用您的技能

Nicholson Gweje

成为会员时间:2023

黄金联赛

92610 积分
使用 Vertex AI 和 Flutter 构建生成式 AI 智能体 Earned Feb 18, 2025 EST
在 Google Cloud 上使用生成式 AI 进行网站现代化改造 Earned Feb 13, 2025 EST
Understanding LookML in Looker Earned Feb 7, 2025 EST
使用多模态 Gemini 和多模态 RAG 检查富文档 Earned Jan 6, 2025 EST
Webhook fundamentals Earned Nov 26, 2024 EST
矢量搜索和嵌入 Earned Nov 24, 2024 EST
Vertex AI Studio 简介 Earned Nov 20, 2024 EST
创建图片标注模型 Earned Nov 20, 2024 EST
Transformer 模型和 BERT 模型 Earned Nov 19, 2024 EST
编码器-解码器架构 Earned Nov 19, 2024 EST
注意力机制 Earned Nov 19, 2024 EST
图像生成简介 Earned Nov 19, 2024 EST
利用 Vertex AI 实现机器学习运维 (MLOps):模型评估 Earned Oct 25, 2024 EDT
适用于生成式 AI 的机器学习运维 (MLOps) Earned Oct 24, 2024 EDT
利用 BigQuery ML 构建预测模型时的数据工程处理 Earned Oct 24, 2024 EDT
Working with Notebooks in Vertex AI Earned Oct 24, 2024 EDT
Professional Machine Learning Engineer Study Guide Earned Oct 23, 2024 EDT
面向开发者的 Responsible AI:隐私保护和安全 Earned Oct 23, 2024 EDT
面向开发者的 Responsible AI:可解释性和透明度 Earned Oct 23, 2024 EDT
The Arcade Base Camp October 2024 Earned Oct 22, 2024 EDT
面向开发者的 Responsible AI:公平性与偏见 Earned Oct 18, 2024 EDT
在 Google Cloud 上创建生成式 AI 应用 Earned Oct 17, 2024 EDT
在 Vertex AI 上构建和部署机器学习解决方案 Earned Oct 17, 2024 EDT
ML Pipelines on Google Cloud Earned Oct 12, 2024 EDT
使用 Gemini 和 Streamlit 开发生成式 AI 应用 Earned Oct 10, 2024 EDT
适用于端到端 SDLC 的 Gemini Earned Oct 8, 2024 EDT
适用于 DevOps 工程师的 Gemini Earned Oct 8, 2024 EDT
适用于安全工程师的 Gemini Earned Oct 7, 2024 EDT
适用于网络工程师的 Gemini Earned Oct 7, 2024 EDT
面向数据科学家和分析师的 Gemini Earned Sep 27, 2024 EDT
适用于云架构师的 Gemini Earned Sep 25, 2024 EDT
适用于应用开发者的 Gemini Earned Sep 25, 2024 EDT
Responsible AI: 和 Google Cloud 一起践行 AI 原则 Earned Sep 24, 2024 EDT
在 Vertex AI 中设计提示 Earned Sep 24, 2024 EDT
负责任的 AI 简介 Earned Sep 22, 2024 EDT
大型语言模型简介 Earned Sep 22, 2024 EDT
Level 3: GenAIus Chats Earned Sep 18, 2024 EDT
The Arcade Base Camp September 2024 Earned Sep 18, 2024 EDT
Machine Learning Operations (MLOps) with Vertex AI: Manage Features Earned Jul 11, 2024 EDT
Machine Learning Operations (MLOps): Getting Started Earned Jul 11, 2024 EDT
Recommendation Systems on Google Cloud Earned Jul 11, 2024 EDT
Natural Language Processing on Google Cloud Earned Jul 5, 2024 EDT
Computer Vision Fundamentals with Google Cloud Earned Jul 4, 2024 EDT
Production Machine Learning Systems Earned Jun 27, 2024 EDT
Machine Learning in the Enterprise Earned Jun 25, 2024 EDT
Feature Engineering Earned Jun 24, 2024 EDT
Build, Train and Deploy ML Models with Keras on Google Cloud Earned Jun 22, 2024 EDT
Launching into Machine Learning Earned Jun 21, 2024 EDT
Google Cloud 上的 AI 和机器学习简介 Earned Jun 18, 2024 EDT
The Power of Storytelling: How to Visualize Data in the Cloud Earned Jun 15, 2024 EDT
Put It All Together: Prepare for a Cloud Data Analyst Job Earned Jun 6, 2024 EDT
Data Transformation in the Cloud Earned Jun 3, 2024 EDT
Data Management and Storage in the Cloud Earned May 28, 2024 EDT
Introduction to Data Analytics in Google Cloud Earned May 22, 2024 EDT
Developing Data Models with LookML Earned Apr 16, 2024 EDT
Manage Data Models in Looker Earned Apr 16, 2024 EDT
Build LookML Objects in Looker Earned Apr 15, 2024 EDT
Data Catalog Fundamentals Earned Apr 14, 2024 EDT
Applying Advanced LookML Concepts in Looker Earned Apr 13, 2024 EDT
通过 BigQuery ML 创建机器学习模型 Earned Apr 12, 2024 EDT
从 BigQuery 数据中挖掘数据洞见 Earned Apr 11, 2024 EDT
为 Looker 信息中心和报告准备数据 Earned Apr 9, 2024 EDT
在 Google Cloud 上为机器学习 API 准备数据 Earned Apr 5, 2024 EDT
Analyzing and Visualizing Data in Looker Earned Mar 20, 2024 EDT
Google Cloud 数据分析功能简介 Earned Mar 16, 2024 EDT
生成式 AI 简介 Earned Dec 13, 2023 EST

在本课程中,您将学习如何使用 Google 的可移植 UI 工具包 Flutter 来开发应用,并将开发的应用与 Google 的生成式 AI 模型家族 Gemini 相集成。您还将练习使用 Vertex AI Agent Builder,这是 Google 为构建和管理 AI 智能体及应用而提供的平台。

了解详情

通过使用生成式 AI,提升网站导航体验,从而为您的用户提供更好的搜索体验。在本课程中,您将学习如何通过 Vertex AI Search 为您的网站用户提供生成式搜索体验,使他们能够发现网站提供的内容。作为网站编辑者,您还将学习如何使用生成式 AI 快速且高效地翻译内容,并根据建议对内容进行改进。

了解详情

In this quest, you will get hands-on experience with LookML in Looker. You will learn how to write LookML code to create new dimensions and measures, create derived tables and join them to Explores, filter Explores, and define caching policies in LookML.

了解详情

完成中级技能徽章课程使用多模态 Gemini 和多模态 RAG 检查富文档,展示您在以下方面的技能: 将多模态与 Gemini 配合使用,从而使用多模态提示从文本数据和视觉数据中提取信息、生成视频说明、 检索视频中不包含的额外信息; 将多模态检索增强生成 (RAG) 与 Gemini 配合使用,以构建包含文本和图片的文档的元数据、获取所有相关文本块并输出引用。 技能徽章是由 Google Cloud 颁发的专属数字徽章,旨在认可 您在 Google Cloud 产品与服务方面的熟练度; 您需要在 交互式实操环境中参加考核,证明自己运用所学知识的能力后才能获得此徽章。完成此技能 徽章课程和作为最终评估的实验室挑战赛, 获得技能徽章, 在您的人际圈中炫出自己的技能。

了解详情

In this course, you will learn the important role that different types of webhooks play in Dialogflow CX development, and how to effectively integrate them into your routine configuration of a Virtual Agent.

了解详情

在本次课程中,探索 AI 赋能的搜索技术、工具和应用。学习利用向量嵌入的语义搜索、融合语义和关键字的混合搜索方法,以及检索增强生成 (RAG) 技术,以打造基于事实的 AI 智能体,尽可能减少 AI 幻觉。获取 Vertex AI Vector Search 实战经验,打造您自己的智能搜索引擎。

了解详情

本课程介绍 Vertex AI Studio,这是一种用于与生成式 AI 模型交互、围绕业务创意进行原型设计并在生产环境中落地的工具。通过沉浸式应用场景、富有吸引力的课程和实操实验,您将探索从提示到产品的整个生命周期,了解如何将 Vertex AI Studio 用于多模态 Gemini 应用、提示设计、提示工程和模型调优。本课程的目的在于帮助您利用 Vertex AI Studio,在自己的项目中充分发掘生成式 AI 的潜力。

了解详情

本课程教您如何使用深度学习来创建图片标注模型。您将了解图片标注模型的不同组成部分,例如编码器和解码器,以及如何训练和评估模型。学完本课程,您将能够自行创建图片标注模型并用来生成图片说明。

了解详情

本课程向您介绍 Transformer 架构和 Bidirectional Encoder Representations from Transformers (BERT) 模型。您将了解 Transformer 架构的主要组成部分,例如自注意力机制,以及该架构如何用于构建 BERT 模型。您还将了解可以使用 BERT 的不同任务,例如文本分类、问答和自然语言推理。完成本课程估计需要大约 45 分钟。

了解详情

本课程简要介绍了编码器-解码器架构,这是一种功能强大且常见的机器学习架构,适用于机器翻译、文本摘要和问答等 sequence-to-sequence 任务。您将了解编码器-解码器架构的主要组成部分,以及如何训练和部署这些模型。在相应的实验演示中,您将在 TensorFlow 中从头编写简单的编码器-解码器架构实现代码,以用于诗歌生成。

了解详情

本课程将向您介绍注意力机制,这是一种强大的技术,可令神经网络专注于输入序列的特定部分。您将了解注意力的工作原理,以及如何使用它来提高各种机器学习任务的性能,包括机器翻译、文本摘要和问题解答。

了解详情

本课程向您介绍扩散模型。这类机器学习模型最近在图像生成领域展现出了巨大潜力。扩散模型的灵感来源于物理学,特别是热力学。过去几年内,扩散模型成为热门研究主题并在整个行业开始流行。Google Cloud 上许多先进的图像生成模型和工具都是以扩散模型为基础构建的。本课程向您介绍扩散模型背后的理论,以及如何在 Vertex AI 上训练和部署此类模型。

了解详情

本课程能让机器学习从业者掌握评估生成式和预测式 AI 模型的基本工具、方法和最佳实践。要确保机器学习系统在实际运用中提供可靠、准确、高效的结果,做好模型评估至关重要。 学员将深入了解各项评估指标、方法及如何在不同模型类型和任务中适当应用这些指标和方法。课程将着重介绍生成式 AI 模型带来的独特挑战,并提供有效解决这些挑战的策略。通过利用 Google Cloud 的 Vertex AI Platform,学员可学习如何在模型选择、优化和持续监控工作中实施卓有成效的评估流程。

了解详情

本课程致力于为您提供所需的知识和工具,让您能够了解 MLOps 团队在部署和管理生成式 AI 模型以及探索 Vertex AI 如何帮助 AI 团队简化 MLOps 流程时面临的独特挑战,并帮助您在生成式 AI 项目中取得成功。

了解详情

完成中级技能徽章课程利用 BigQuery ML 构建预测模型时的数据工程处理, 展示自己在以下方面的技能:利用 Dataprep by Trifacta 构建 BigQuery 数据转换流水线; 利用 Cloud Storage、Dataflow 和 BigQuery 构建提取、转换和加载 (ETL) 工作流; 以及利用 BigQuery ML 构建机器学习模型。

了解详情

This course is an introduction to Vertex AI Notebooks, which are Jupyter notebook-based environments that provide a unified platform for the entire machine learning workflow, from data preparation to model deployment and monitoring. The course covers the following topics: (1) The different types of Vertex AI Notebooks and their features and (2) How to create and manage Vertex AI Notebooks.

了解详情

This course helps learners create a study plan for the PMLE (Professional Machine Learning Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

了解详情

本课程介绍 AI 隐私保护和安全方面的重要主题,还将探索使用 Google Cloud 产品和开源工具实施建议的 AI 隐私保护和安全实践的实用方法和工具。

了解详情

本课程介绍了 AI 可解释性和透明度的相关概念,探讨了 AI 透明度对于开发者和工程师的重要性。同时探索了有助于在数据和 AI 模型中实现可解释性和透明度的实用方法及工具。

了解详情

Welcome to Base Camp, where you’ll develop key Google Cloud skills (available in Spanish and Portuguese too!) and earn an exclusive credential that will open doors to the cloud for you. No prior experience is required!

了解详情

本课程介绍了 Responsible AI 的概念和 AI 原则,还介绍了在 AI/机器学习实践中识别公平性与偏见以及减少偏见的实用技巧,同时探索了使用 Google Cloud 产品和开源工具来实施 Responsible AI 最佳实践的实用方法和工具。

了解详情

生成式 AI 应用可以提供大语言模型 (LLM) 问世前几乎不可能实现的全新用户体验。作为应用开发者,您要如何利用生成式 AI 在 Google Cloud 上构建更具吸引力且功能强大的应用? 在本课程中,您将了解生成式 AI 应用,以及如何利用提示设计和检索增强生成 (RAG) 技术,构建使用 LLM 的强大应用。您将了解可用于生产用途且适合生成式 AI 应用的架构,并构建一个基于 LLM 和 RAG 的聊天应用。

了解详情

完成在 Vertex AI 上构建和部署机器学习解决方案课程,赢取中级技能徽章。 在此课程中,您将了解如何使用 Google Cloud 的 Vertex AI Platform、AutoML 以及自定义训练服务来 训练、评估、调优、解释和部署机器学习模型。 此技能徽章课程的目标受众是专业的数据科学家和机器学习 工程师。 技能徽章是由 Google Cloud 颁发的专属数字徽章,旨在认可 您对 Google Cloud 产品与服务的熟练度;您需要在 交互式实操环境中参加考核,证明自己运用所学知识的能力后才能获得此徽章。完成此技能徽章课程 和作为最终评估的实验室挑战赛,即可获得数字徽章, 在您的人际圈中炫出自己的技能。

了解详情

In this course, you will be learning from ML Engineers and Trainers who work with the state-of-the-art development of ML pipelines here at Google Cloud. The first few modules will cover about TensorFlow Extended (or TFX), which is Google’s production machine learning platform based on TensorFlow for management of ML pipelines and metadata. You will learn about pipeline components and pipeline orchestration with TFX. You will also learn how you can automate your pipeline through continuous integration and continuous deployment, and how to manage ML metadata. Then we will change focus to discuss how we can automate and reuse ML pipelines across multiple ML frameworks such as tensorflow, pytorch, scikit learn, and xgboost. You will also learn how to use another tool on Google Cloud, Cloud Composer, to orchestrate your continuous training pipelines. And finally, we will go over how to use MLflow for managing the complete machine learning life cycle.

了解详情

完成中级技能徽章课程“使用 Gemini 和 Streamlit 开发生成式 AI 应用”,展示您在以下方面的技能: 文本生成、通过 Python SDK 和 Gemini API 应用函数调用,以及通过 Cloud Run 部署 Streamlit 应用。 您将了解如何以不同方式通过提示来让 Gemini 生成文本、使用 Cloud Shell 进行测试,以及如何迭代 Streamlit 应用,随后将其封装成 Docker 容器并部署在 Cloud Run 中。

了解详情

在本课程中,您将了解 Gemini(Google Cloud 推出的一款依托生成式 AI 的协作工具)如何帮助您使用 Google 产品和服务开发、测试、部署和管理应用。在 Gemini 的协助下,您可以学习如何开发和构建 Web 应用、修复应用中的错误、开发测试和查询数据。您可以通过实操实验了解如何利用 Gemini 来改进软件开发生命周期 (SDLC)。 Duet AI 已更名为 Gemini,这是我们的新一代模型。

了解详情

在本课程中,您将了解 Gemini(Google Cloud 推出的一款依托生成式 AI 的协作工具)如何帮助工程师管理基础设施。您将了解如何向 Gemini 输入提示,让其查找和理解应用日志、创建 GKE 集群,以及研究如何创建构建环境。您可以通过实操实验了解如何利用 Gemini 来改进 DevOps 工作流。 Duet AI 已更名为 Gemini,这是我们的新一代模型。

了解详情

在本课程中,您将了解 Gemini(Google Cloud 推出的一款依托生成式 AI 的协作工具)如何帮助您保护您的云环境和资源。您将学习如何将示例工作负载部署到 Google Cloud 环境中,以及如何借助 Gemini 识别和修复安全配置错误。您可以通过实操实验了解如何利用 Gemini 来改善云安全状况。 Duet AI 已更名为 Gemini,这是我们的新一代模型。

了解详情

在本课程中,您将了解 Gemini(Google Cloud 推出的一款依托生成式 AI 的协作工具)如何帮助网络工程师创建、更新和维护 VPC 网络。您将学习如何向 Gemini 输入提示,让其针对您的网络组建和管理任务,提供您从搜索引擎所无法获得的具体指导。您可以通过实操实验了解如何利用 Gemini 更轻松地使用 Google Cloud VPC 网络。 Duet AI 已更名为 Gemini,这是我们的新一代模型。

了解详情

在本课程中,您将了解 Gemini(Google Cloud 的生成式 AI 赋能的协作工具)如何帮助分析客户数据并预测产品销售情况。此外,您还将了解如何在 BigQuery 中使用客户数据来识别、开发新客户并对其进行分类。通过动手实验,您将体验 Gemini 如何改进数据分析和机器学习工作流。 Duet AI 已更名为 Gemini,这是我们的新一代模型。

了解详情

在本课程中,您将了解 Gemini(Google Cloud 的生成式 AI 赋能的协作工具)如何帮助管理员预配基础设施。您将了解如何通过输入提示来让 Gemini 解释基础设施、GKE 集群的部署,以及现有基础设施的更新。您可以通过实操实验了解如何利用 Gemini 来改进 GKE 部署工作流。 Duet AI 已更名为 Gemini,这是我们的新一代模型。

了解详情

在本课程中,您将了解 Google Cloud 中依托生成式 AI 技术的协作工具 Gemini 如何帮助开发者构建应用。您将学习如何向 Gemini 输入提示,让其为您解释代码、推荐 Google Cloud 服务并为您的应用生成代码。您将通过实操实验体验 Gemini 对应用开发工作流的改进作用。 Duet AI 已更名为 Gemini,这是我们的新一代模型。

了解详情

随着企业对人工智能和机器学习的应用越来越广泛,以负责任的方式构建这些技术也变得更加重要。但对很多企业而言,真正践行 Responsible AI 并非易事。如果您有意了解如何在组织内践行 Responsible AI,本课程正适合您。 本课程将介绍 Google Cloud 目前如何践行 Responsible AI,以及从中总结的最佳实践和经验教训,便于您以此为框架构建自己的 Responsible AI 方法。

了解详情

完成 在 Vertex AI 中设计提示入门技能徽章课程,展示以下方面的技能: Vertex AI 中的提示工程、图片分析和多模态生成式技术。探索如何编写有效的提示,指导生成式 AI 输出, 以及将 Gemini 模型应用于真实的营销场景。 技能徽章 是由 Google Cloud 颁发的专属数字徽章,旨在认可 您在 Google Cloud 产品与服务方面的熟练度;您需要在 交互式实操环境中参加考核,证明自己运用所学知识的能力后才能获得。完成此技能 徽章课程和作为最终评估的实验室挑战赛,获得技能徽章, 并在您的社交圈中秀一秀自己的水平。

了解详情

这是一节入门级微课程,旨在解释什么是负责任的 AI、它的重要性,以及 Google 如何在自己的产品中实现负责任的 AI。此外,本课程还介绍了 Google 的 7 个 AI 开发原则。

了解详情

这是一节入门级微学习课程,探讨什么是大型语言模型 (LLM)、适合的应用场景以及如何使用提示调整来提升 LLM 性能,还介绍了可以帮助您开发自己的 Gen AI 应用的各种 Google 工具。

了解详情

Discover Generative AI and Language Learning through hands-on labs that push your Google Cloud skills further and earn an exclusive Google Cloud Credential that recognizes your ability to tackle real-world challenges.

了解详情

Welcome to Base Camp, where you’ll develop key Google Cloud skills (available in Spanish and Portuguese too!) and earn an exclusive credential that will open doors to the cloud for you. No prior experience is required!

了解详情

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Learners will get hands-on practice using Vertex AI Feature Store's streaming ingestion at the SDK layer.

了解详情

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

了解详情

In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.

了解详情

This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.

了解详情

This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.

了解详情

This course covers how to implement the various flavors of production ML systems— static, dynamic, and continuous training; static and dynamic inference; and batch and online processing. You delve into TensorFlow abstraction levels, the various options for doing distributed training, and how to write distributed training models with custom estimators. This is the second course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Image Understanding with TensorFlow on Google Cloud course.

了解详情

This course takes a real-world approach to the ML Workflow through a case study. An ML team faces several ML business requirements and use cases. The team must understand the tools required for data management and governance and consider the best approach for data preprocessing. The team is presented with three options to build ML models for two use cases. The course explains why they would use AutoML, BigQuery ML, or custom training to achieve their objectives.

了解详情

This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.

了解详情

This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.

了解详情

The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.

了解详情

本课程介绍 Google Cloud 中的 AI 和机器学习 (ML) 服务,这些服务可构建预测式和生成式 AI 项目。本课程探讨从数据到 AI 的整个生命周期中可用的技术、产品和工具,包括 AI 基础、开发和解决方案。通过引人入胜的学习体验和实操练习,本课程可帮助数据科学家、AI 开发者和机器学习工程师提升技能和知识水平。

了解详情

This is the fourth of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll focus on developing skills in the five key stages of visualizing data in the cloud: storytelling, planning, exploring data, building visualizations, and sharing data with others. You’ll also gain experience using UI/UX skills to wireframe impactful, cloud-native visualizations and work with cloud-native data visualization tools to explore datasets, create reports, and build dashboards that drive decisions and foster collaboration.

了解详情

This is the fifth of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll combine and apply the foundational knowledge and skills from courses 1-4 in a hands-on Capstone project that focuses on the full data lifecycle project. You’ll practice using cloud-based tools to acquire, store, process, analyze, visualize, and communicate data insights effectively. By the end of the course, you’ll have completed a project demonstrating their proficiency in effectively structuring data from multiple sources, presenting solutions to varied stakeholders, and visualizing data insights using cloud-based software. You’ll also update your resume and practice interview techniques to help prepare for applying and interviewing for jobs.

了解详情

This is the third of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll begin by getting an overview of the data journey, from collection to insights. You’ll then learn how to use SQL to transform raw data into a usable format. Next, you’ll learn how to transform high volumes of data with a data pipeline. Finally, you’ll gain experience applying transformation strategies to real data sets to solve business needs.

了解详情

This is the second of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll explore how data is structured and organized. You’ll gain hands-on experience with the data lakehouse architecture and cloud components like BigQuery, Google Cloud Storage, and DataProc to efficiently store, analyze, and process large datasets.

了解详情

This is the first of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll define the field of cloud data analysis and describe roles and responsibilities of a cloud data analyst as they relate to data acquisition, storage, processing, and visualization. You’ll explore the architecture of Google Cloud-based tools, like BigQuery and Cloud Storage, and how they are used to effectively structure, present, and report data.

了解详情

This course empowers you to develop scalable, performant LookML (Looker Modeling Language) models that provide your business users with the standardized, ready-to-use data that they need to answer their questions. Upon completing this course, you will be able to start building and maintaining LookML models to curate and manage data in your organization’s Looker instance.

了解详情

Complete the intermediate Manage Data Models in Looker skill badge to demonstrate skills in the following: maintaining LookML project health; utilizing SQL runner for data validation; employing LookML best practices; optimizing queries and reports for performance; and implementing persistent derived tables and caching policies. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge course, and the final assessment challenge lab, to receive a digital badge that you can share with your network.

了解详情

Complete the introductory Build LookML Objects in Looker skill badge course to demonstrate skills in the following: building new dimensions and measures, views, and derived tables; setting measure filters and types based on requirements; updating dimensions and measures; building and refining Explores; joining views to existing Explores; and deciding which LookML objects to create based on business requirements.

了解详情

Data Catalog is deprecated and will be discontinued on January 30, 2026. You can still complete this course if you want to. For steps to transition your Data Catalog users, workloads, and content to Dataplex Catalog, see Transition from Data Catalog to Dataplex Catalog (https://cloud.google.com/dataplex/docs/transition-to-dataplex-catalog). Data Catalog is a fully managed and scalable metadata management service that empowers organizations to quickly discover, understand, and manage all of their data. In this quest you will start small by learning how to search and tag data assets and metadata with Data Catalog. After learning how to build your own tag templates that map to BigQuery table data, you will learn how to build MySQL, PostgreSQL, and SQLServer to Data Catalog Connectors.

了解详情

In this course, you will get hands-on experience applying advanced LookML concepts in Looker. You will learn how to use Liquid to customize and create dynamic dimensions and measures, create dynamic SQL derived tables and customized native derived tables, and use extends to modularize your LookML code.

了解详情

完成中级技能徽章课程通过 BigQuery ML 创建机器学习模型,展示您在以下方面的技能: 使用 BigQuery ML 创建和评估机器学习模型,以执行数据预测。 技能徽章是由 Google Cloud 颁发的专属数字徽章,旨在认可 您在 Google Cloud 产品与服务方面的熟练度;您需要在 交互式实操环境中参加考核,证明自己运用所学知识的能力后才能获得此徽章。完成此技能 徽章课程和作为最终评估的实验室挑战赛,即可获得技能徽章, 在您的人际圈中炫出自己的技能。

了解详情

完成入门级技能徽章课程“从 BigQuery 数据中挖掘数据洞见”,展示您在以下方面的技能: 编写 SQL 查询、查询公共表、将示例数据加载到 BigQuery 中、 在 BigQuery 中使用查询验证器排查常见的语法错误,以及通过连接到 BigQuery 数据在 Looker Studio 中 创建报告。

了解详情

完成为 Looker 信息中心和报告准备数据入门级技能徽章课程, 展现您在以下方面的技能:对数据进行过滤、排序和透视;将来自不同 Looker 探索的结果合并; 以及使用函数和运算符构建 Looker 信息中心和报告以用于数据分析和可视化。 技能徽章是由 Google Cloud 颁发的专属数字徽章,旨在认可 您在 Google Cloud 产品与服务方面的熟练度;您需要在交互式实操环境中参加考核, 证明自己运用所学知识的能力后才能获得此徽章。完成此技能徽章课程和 作为最终评估的实验室挑战赛,即可获得技能徽章,在您的人际圈中 炫出自己的技能。

了解详情

完成入门级技能徽章课程在 Google Cloud 上为机器学习 API 准备数据,展示以下技能: 使用 Dataprep by Trifacta 清理数据、在 Dataflow 中运行数据流水线、在 Dataproc 中创建集群和运行 Apache Spark 作业,以及调用机器学习 API,包括 Cloud Natural Language API、Google Cloud Speech-to-Text API 和 Video Intelligence API。 技能徽章是由 Google Cloud 颁发的专属数字徽章,旨在认可您在 Google Cloud 产品与服务方面的熟练度; 您需要在交互式实操环境中参加考核,证明自己运用所学知识的能力后才能获得。完成此技能徽章课程和作为最终评估的实验室挑战赛, 获得技能徽章,在您的人际圈中炫出自己的技能。

了解详情

In this course, you learn how to do the kind of data exploration and analysis in Looker that would formerly be done primarily by SQL developers or analysts. Upon completion of this course, you will be able to leverage Looker's modern analytics platform to find and explore relevant content in your organization’s Looker instance, ask questions of your data, create new metrics as needed, and build and share visualizations and dashboards to facilitate data-driven decision making.

了解详情

在本新手级课程中,您将了解 Google Cloud 数据分析工作流,以及可用于探索、分析和直观呈现数据并与相关人员共享发现结果的工具。结合案例研究、实操实验、讲座和测验/演示,本课程展示了如何将原始数据集转化为纯净数据,进而转化为实用的可视化图表和信息中心。无论您是已经在从事数据工作并想了解如何通过 Google Cloud 取得成功,还是在寻求职业发展,都可以借助本课程迈出第一步。几乎所有在工作中执行或使用数据分析的人都可以从本课程中受益。

了解详情

这是一节入门级微课程,旨在解释什么是生成式 AI、它的用途以及与传统机器学习方法的区别。该课程还介绍了可以帮助您开发自己的生成式 AI 应用的各种 Google 工具。

了解详情