Sarthak Chandarana
회원 가입일: 2021
브론즈 리그
800포인트
회원 가입일: 2021
이 과정에서는 최근 이미지 생성 분야에서 가능성을 보여준 머신러닝 모델 제품군인 확산 모델을 소개합니다. 확산 모델은 열역학을 비롯한 물리학에서 착안했습니다. 지난 몇 년 동안 확산 모델은 연구계와 업계 모두에서 주목을 받았습니다. 확산 모델은 Google Cloud의 다양한 최신 이미지 생성 모델과 도구를 뒷받침합니다. 이 과정에서는 확산 모델의 이론과 Vertex AI에서 이 모델을 학습시키고 배포하는 방법을 소개합니다.
생성형 AI 입문자 - Vertex AI 과정은 Google Cloud에서 생성형 AI를 사용하는 방법에 대한 실습으로 이루어져 있습니다. 실습을 통해 다음을 알아봅니다. text-bison, chat-bison, textembedding-gecko을 포함한 Vertex AI PaLM API 제품군에서 모델을 사용하는 방법을 알아봅니다. 프롬프트 설계, 권장사항에 대해 배우고 아이디어 구상, 텍스트 분류, 텍스트 추출, 텍스트 요약 등에 이를 사용하는 방법도 학습합니다. 또한 Vertex AI 커스텀 학습으로 파운데이션 모델을 학습시켜 모델을 조정하는 방법과 Vertex AI 엔드포인트에 배포하는 방법도 알아봅니다.
이 과정은 Transformer 아키텍처와 BERT(Bidirectional Encoder Representations from Transformers) 모델을 소개합니다. 셀프 어텐션 메커니즘 같은 Transformer 아키텍처의 주요 구성요소와 이 아키텍처가 BERT 모델 빌드에 사용되는 방식에 관해 알아봅니다. 또한 텍스트 분류, 질문 답변, 자연어 추론과 같이 BERT를 활용할 수 있는 다양한 작업에 대해서도 알아봅니다. 이 과정은 완료하는 데 대략 45분이 소요됩니다.
이 과정에서는 신경망이 입력 시퀀스의 특정 부분에 집중할 수 있도록 하는 강력한 기술인 주목 메커니즘을 소개합니다. 주목 메커니즘의 작동 방식과 이 메커니즘을 다양한 머신러닝 작업(기계 번역, 텍스트 요약, 질문 답변 등)의 성능을 개선하는 데 활용하는 방법을 알아봅니다.
이 과정은 입문용 마이크로 학습 과정으로, 대규모 언어 모델(LLM)이란 무엇이고, LLM을 활용할 수 있는 사용 사례로는 어떤 것이 있으며, 프롬프트 조정을 사용해 LLM 성능을 개선하는 방법은 무엇인지 알아봅니다. 또한 자체 생성형 AI 앱을 개발하는 데 도움이 되는 Google 도구에 대해서도 다룹니다.
생성형 AI란 무엇이고 어떻게 사용하며 전통적인 머신러닝 방법과는 어떻게 다른지 설명하는 입문용 마이크로 학습 과정입니다. 직접 생성형 AI 앱을 개발하는 데 도움이 되는 Google 도구에 대해서도 다룹니다.
이 초급 과정에서는 다른 과정과 차별화된 실습을 제공합니다. 이 과정은 IT 전문가에게 Google Cloud 공인 어소시에이트 클라우드 엔지니어 자격증 시험에서 다루는 주제와 서비스에 대한 실무형 실습을 제공하도록 선별되었습니다. IAM, 네트워킹, Kubernetes Engine 배포 등에 대해 다루며 Google Cloud 지식을 테스트해 볼 수 있는 구체적인 실습으로 구성되어 있습니다. 이러한 실습만으로도 기술과 역량을 향상시킬 수 있지만 시험 가이드 및 함께 제공되는 다른 준비용 리소스도 검토해 보시기 바랍니다.
가장 인기 있는 이 탐구 과정에서 Google Cloud를 처음으로 실습할 수 있습니다. Stackdriver 및 Kubernetes의 고급 개념으로 실습하여 VM 가동, 키 인프라 도구 구성과 같은 기본사항을 익혀 보세요.