Rejoindre Se connecter

Mettez en pratique vos compétences dans la console Google Cloud

Paweł Sowa

Date d'abonnement : 2022

Ligue d'Argent

11950 points
Machine Learning Operations (MLOps) for Generative AI Earned mai 2, 2025 EDT
Responsible AI for Developers: Privacy & Safety Earned mai 2, 2025 EDT
Responsible AI for Developers: Interpretability & Transparency Earned avr. 29, 2025 EDT
Responsible AI for Developers: Fairness & Bias Earned avr. 25, 2025 EDT
Inspect Rich Documents with Gemini Multimodality and Multimodal RAG Earned avr. 25, 2025 EDT
Vector Search and Embeddings Earned avr. 22, 2025 EDT
Introduction to Vertex AI Studio Earned avr. 22, 2025 EDT
Create Image Captioning Models Earned avr. 22, 2025 EDT
Transformer Models and BERT Model Earned avr. 19, 2025 EDT
Encoder-Decoder Architecture Earned avr. 19, 2025 EDT
Attention Mechanism Earned avr. 19, 2025 EDT
Introduction to Image Generation Earned avr. 19, 2025 EDT
Set Up an App Dev Environment on Google Cloud Earned sept. 20, 2022 EDT
Implementing Cloud Load Balancing for Compute Engine Earned sept. 20, 2022 EDT
Google Cloud Fundamentals: Core Infrastructure Earned sept. 19, 2022 EDT
Baseline: Infrastructure Earned sept. 18, 2022 EDT

This course is dedicated to equipping you with the knowledge and tools needed to uncover the unique challenges faced by MLOps teams when deploying and managing Generative AI models, and exploring how Vertex AI empowers AI teams to streamline MLOps processes and achieve success in Generative AI projects.

En savoir plus

This course introduces important topics of AI privacy and safety. It explores practical methods and tools to implement AI privacy and safety recommended practices through the use of Google Cloud products and open-source tools.

En savoir plus

This course introduces concepts of AI interpretability and transparency. It discusses the importance of AI transparency for developers and engineers. It explores practical methods and tools to help achieve interpretability and transparency in both data and AI models.

En savoir plus

This course introduces concepts of responsible AI and AI principles. It covers techniques to practically identify fairness and bias and mitigate bias in AI/ML practices. It explores practical methods and tools to implement Responsible AI best practices using Google Cloud products and open source tools.

En savoir plus

Complete the intermediate Inspect Rich Documents with Gemini Multimodality and Multimodal RAG skill badge course to demonstrate skills in the following: using multimodal prompts to extract information from text and visual data, generating a video description, and retrieving extra information beyond the video using multimodality with Gemini; building metadata of documents containing text and images, getting all relevant text chunks, and printing citations by using Multimodal Retrieval Augmented Generation (RAG) with Gemini.

En savoir plus

Explore AI-powered search technologies, tools, and applications in this course. Learn semantic search utilizing vector embeddings, hybrid search combining semantic and keyword approaches, and retrieval-augmented generation (RAG) minimizing AI hallucinations as a grounded AI agent. Gain practical experience with Vertex AI Vector Search to build your intelligent search engine.

En savoir plus

This course introduces Vertex AI Studio, a tool to interact with generative AI models, prototype business ideas, and launch them into production. Through an immersive use case, engaging lessons, and a hands-on lab, you’ll explore the prompt-to-product lifecycle and learn how to leverage Vertex AI Studio for Gemini multimodal applications, prompt design, prompt engineering, and model tuning. The aim is to enable you to unlock the potential of gen AI in your projects with Vertex AI Studio.

En savoir plus

This course teaches you how to create an image captioning model by using deep learning. You learn about the different components of an image captioning model, such as the encoder and decoder, and how to train and evaluate your model. By the end of this course, you will be able to create your own image captioning models and use them to generate captions for images

En savoir plus

This course introduces you to the Transformer architecture and the Bidirectional Encoder Representations from Transformers (BERT) model. You learn about the main components of the Transformer architecture, such as the self-attention mechanism, and how it is used to build the BERT model. You also learn about the different tasks that BERT can be used for, such as text classification, question answering, and natural language inference.This course is estimated to take approximately 45 minutes to complete.

En savoir plus

This course gives you a synopsis of the encoder-decoder architecture, which is a powerful and prevalent machine learning architecture for sequence-to-sequence tasks such as machine translation, text summarization, and question answering. You learn about the main components of the encoder-decoder architecture and how to train and serve these models. In the corresponding lab walkthrough, you’ll code in TensorFlow a simple implementation of the encoder-decoder architecture for poetry generation from the beginning.

En savoir plus

This course will introduce you to the attention mechanism, a powerful technique that allows neural networks to focus on specific parts of an input sequence. You will learn how attention works, and how it can be used to improve the performance of a variety of machine learning tasks, including machine translation, text summarization, and question answering. This course is estimated to take approximately 45 minutes to complete.

En savoir plus

This course introduces diffusion models, a family of machine learning models that recently showed promise in the image generation space. Diffusion models draw inspiration from physics, specifically thermodynamics. Within the last few years, diffusion models became popular in both research and industry. Diffusion models underpin many state-of-the-art image generation models and tools on Google Cloud. This course introduces you to the theory behind diffusion models and how to train and deploy them on Vertex AI.

En savoir plus

Earn a skill badge by completing the Set Up an App Dev Environment on Google Cloud skill badge course, where you learn how to build and connect storage-centric cloud infrastructure using the basic capabilities of the following technologies: Cloud Storage, Identity and Access Management, Cloud Functions, and Pub/Sub.

En savoir plus

Complete the introductory Implementing Cloud Load Balancing for Compute Engine skill badge to demonstrate skills in the following: creating and deploying virtual machines in Compute Engine and configuring network and application load balancers.

En savoir plus

Google Cloud Fundamentals: Core Infrastructure introduces important concepts and terminology for working with Google Cloud. Through videos and hands-on labs, this course presents and compares many of Google Cloud's computing and storage services, along with important resource and policy management tools.

En savoir plus

If you are a novice cloud developer looking for hands-on practice beyond Google Cloud Essentials, this course is for you. You will get practical experience through labs that dive into Cloud Storage and other key application services like Monitoring and Cloud Functions. You will develop valuable skills that are applicable to any Google Cloud initiative. 1-minute videos walk you through key concepts for these labs.

En savoir plus