Pranita Naphade
회원 가입일: 2021
실버 리그
5495포인트
회원 가입일: 2021
This skill badge course aims to unlock the power of data visualization and business intelligence reporting with Looker, and gain hands-on experience through labs.
Google Workspace를 위한 Gemini는 사용자에게 생성형 AI 기능에 대한 액세스를 제공하는 부가기능입니다. 이 과정에서는 Google Meet의 Gemini 기능에 대해 자세히 알아봅니다. 동영상 강의, 실습 활동, 실제 사례를 통해 Google Meet의 Gemini 기능을 종합적으로 이해할 수 있습니다. Gemini를 사용하여 배경 이미지를 생성하고, 동영상 품질을 개선하고, 자막을 번역하는 방법을 배웁니다. 본 과정을 마치면 Google Meet의 Gemini를 자신 있게 활용하여 화상 회의의 효과를 극대화하는 데 필요한 지식과 기술을 갖추게 됩니다.
Google Workspace를 위한 Gemini는 고객에게 Google Workspace의 생성형 AI 기능을 제공하는 부가기능입니다. 이 미니 학습 과정에서는 Gemini의 주요 기능을 살펴보고 이러한 기능으로 Google Slides의 생산성과 효율성을 향상하는 방법을 알아봅니다.
Google Workspace를 위한 Gemini는 고객이 Google Workspace에서 생성형 AI 기능을 사용할 수 있도록 하는 부가기능입니다. 이 미니 학습 과정에서는 Gemini의 주요 기능을 살펴보고 이러한 기능으로 Google Sheets의 생산성과 효율성을 향상하는 방법을 알아봅니다.
Google Workspace를 위한 Gemini는 사용자에게 생성형 AI 기능에 대한 액세스를 제공하는 부가기능입니다. 이 과정은 동영상 강의, 실습, 실제 사례를 사용하여 Google Docs의 Gemini가 제공하는 기능을 상세하게 살펴봅니다. 학습자는 Gemini를 사용하여 프롬프트를 바탕으로 텍스트 콘텐츠를 생성하는 방법을 확인하게 됩니다. 또한, 이미 작성한 텍스트를 Gemini로 수정하는 방법을 알아봅니다. 이러한 Gemini 활용을 통해 전체적인 생산성을 향상할 수 있습니다. 이 과정을 완료하면 Google Docs의 Gemini를 자신 있게 활용하여 텍스트 콘텐츠를 향상할 수 있는 지식과 기술을 얻게 됩니다.
Google Workspace를 위한 Gemini는 고객에게 Google Workspace의 생성형 AI 기능을 제공하는 부가기능입니다. 이 미니 학습 과정에서는 Gemini의 주요 기능을 살펴보고 이러한 기능으로 Gmail의 생산성과 효율성을 향상하는 방법을 알아봅니다.
Google Workspace를 위한 Gemini는 고객에게 Google Workspace의 생성형 AI 기능을 제공하는 부가기능입니다. 이 학습 과정에서는 Gemini의 주요 기능을 살펴보고 이러한 기능으로 Google Workspace의 생산성과 효율성을 향상하는 방법을 알아봅니다.
This workload aims to upskill Google Cloud partners to perform specific tasks for modernization using LookML on BigQuery. A proof-of-concept will take learners through the process of creating LookML visualizations on BigQuery. During this course, learners will be guided specifically on how to write Looker modeling language, also known as LookML and create semantic data models, and learn how LookML constructs SQL queries against BigQuery. At a high level, this course will focus on basic LookML to create and access BigQuery objects, and optimize BigQuery objects with LookML.
이 과정은 입문용 마이크로 학습 과정으로, 대규모 언어 모델(LLM)이란 무엇이고, LLM을 활용할 수 있는 사용 사례로는 어떤 것이 있으며, 프롬프트 조정을 사용해 LLM 성능을 개선하는 방법은 무엇인지 알아봅니다. 또한 자체 생성형 AI 앱을 개발하는 데 도움이 되는 Google 도구에 대해서도 다룹니다.
이 과정은 Transformer 아키텍처와 BERT(Bidirectional Encoder Representations from Transformers) 모델을 소개합니다. 셀프 어텐션 메커니즘 같은 Transformer 아키텍처의 주요 구성요소와 이 아키텍처가 BERT 모델 빌드에 사용되는 방식에 관해 알아봅니다. 또한 텍스트 분류, 질문 답변, 자연어 추론과 같이 BERT를 활용할 수 있는 다양한 작업에 대해서도 알아봅니다. 이 과정은 완료하는 데 대략 45분이 소요됩니다.
이 과정은 기계 번역, 텍스트 요약, 질의 응답과 같은 시퀀스-투-시퀀스(Seq2Seq) 작업에 널리 사용되는 강력한 머신러닝 아키텍처인 인코더-디코더 아키텍처에 대한 개요를 제공합니다. 인코더-디코더 아키텍처의 기본 구성요소와 이러한 모델의 학습 및 서빙 방법에 대해 알아봅니다. 해당하는 실습 둘러보기에서는 TensorFlow에서 시를 짓는 인코더-디코더 아키텍처를 처음부터 간단하게 구현하는 코딩을 해봅니다.
이 과정에서는 신경망이 입력 시퀀스의 특정 부분에 집중할 수 있도록 하는 강력한 기술인 주목 메커니즘을 소개합니다. 주목 메커니즘의 작동 방식과 이 메커니즘을 다양한 머신러닝 작업(기계 번역, 텍스트 요약, 질문 답변 등)의 성능을 개선하는 데 활용하는 방법을 알아봅니다.
이 과정에서는 최근 이미지 생성 분야에서 가능성을 보여준 머신러닝 모델 제품군인 확산 모델을 소개합니다. 확산 모델은 열역학을 비롯한 물리학에서 착안했습니다. 지난 몇 년 동안 확산 모델은 연구계와 업계 모두에서 주목을 받았습니다. 확산 모델은 Google Cloud의 다양한 최신 이미지 생성 모델과 도구를 뒷받침합니다. 이 과정에서는 확산 모델의 이론과 Vertex AI에서 이 모델을 학습시키고 배포하는 방법을 소개합니다.
Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.
책임감 있는 AI란 무엇이고 이것이 왜 중요하며 Google에서는 어떻게 제품에 책임감 있는 AI를 구현하고 있는지 설명하는 입문용 마이크로 학습 과정입니다. Google의 7가지 AI 원칙도 소개합니다.
생성형 AI란 무엇이고 어떻게 사용하며 전통적인 머신러닝 방법과는 어떻게 다른지 설명하는 입문용 마이크로 학습 과정입니다. 직접 생성형 AI 앱을 개발하는 데 도움이 되는 Google 도구에 대해서도 다룹니다.
In this course, you shadow a series of client meetings led by a Looker Professional Services Consultant.
By the end of this course, you should feel confident employing technical concepts to fulfill business requirements and be familiar with common complex design patterns.
In this course you will discover additional tools for your toolbox for working with complex deployments, building robust solutions, and delivering even more value.
Develop technical skills beyond LookML along with basic administration for optimizing Looker instances
This course reviews the processes for creating table calculations, pivots and visualizations
In this course you will discover Liquid, the templating language invented by Shopify and explore how it can be used in Looker to create dynamic links, content, formatting, and more.
This course aims to introduce you to the basic concepts of Git: what it is and how it's used in Looker. You will also develop an in-depth knowledge of the caching process on the Looker platform, such as why they are used and why they work
This course provides an introduction to databases and summarized the differences in the main database technologies. This course will also introduce you to Looker and how Looker scales as a modern data platform. In the lessons, you will build and maintain standard Looker data models and establish the foundation necessary to learn Looker's more advanced features.
This course provides an iterative approach to plan, build, launch, and grow a modern, scalable, mature analytics ecosystem and data culture in an organization that consistently achieves established business outcomes. Users will also learn how to design and build a useful, easy-to-use dashboard in Looker. It assumes experience with everything covered in our Getting Started with Looker and Building Reports in Looker courses.
Hands on course covering the main uses of extends and the three primary LookML objects extends are used on as well as some advanced usage of extends.
This course is designed to teach you about roles, permission sets and model sets. These are areas that are used together to manage what users can do and what they can see in Looker.
This course is designed for Looker users who want to create their own ad-hoc reports. It assumes experience of everything covered in our Get Started with Looker course (logging in, finding Looks & dashboards, adjusting filters, and sending data)
In this course, we’ll show you how organizations are aligning their BI strategy to most effectively achieve business outcomes with Looker. We'll follow four iterative steps: Plan, Build, Launch, Grow, and provide resources to take into your own services delivery to build Looker with the goal of achieving business outcomes.
By the end of this course, you should be able to articulate Looker's value propositions and what makes it different from other analytics tools in the market. You should also be able to explain how Looker works, and explain the standard components of successful service delivery.