加入 登录

在 Google Cloud 控制台中运用您的技能

Matt Regojos

成为会员时间:2021

黄金联赛

58405 积分
Google Workspace Core Services Earned May 1, 2025 EDT
Google Workspace User and Resource Management Earned May 1, 2025 EDT
AI 时代安全性简介 Earned Apr 16, 2025 EDT
适用于生成式 AI 的机器学习运维 (MLOps) Earned Apr 16, 2025 EDT
生成式 AI:剖析基本概念 Earned Apr 12, 2025 EDT
生成式 AI:不只是聊天机器人 Earned Apr 12, 2025 EDT
Developing Applications with Cloud Run on Google Cloud: Fundamentals Earned Mar 27, 2025 EDT
设置 Google Cloud 网络 Earned Mar 27, 2025 EDT
云架构:设计、实施和管理 Earned Mar 27, 2025 EDT
使用 Google Cloud Observability 进行监控和记录 Earned Feb 15, 2025 EST
Using DevSecOps in your Google Cloud Environment Earned Feb 14, 2025 EST
在 Compute Engine 上实现负载均衡 Earned Jan 27, 2025 EST
Observability in Google Cloud Earned Jan 26, 2025 EST
Professional Machine Learning Engineer Study Guide Earned Oct 24, 2024 EDT
Put It All Together: Prepare for a Cloud Security Analyst Job Earned Aug 5, 2024 EDT
Detect, Respond, and Recover from Cloud Cybersecurity Attacks Earned Aug 1, 2024 EDT
Cloud Security Risks: Identify and Protect Against Threats Earned Jul 29, 2024 EDT
Strategies for Cloud Security Risk Management Earned Jul 28, 2024 EDT
Introduction to Security Principles in Cloud Computing Earned Jul 27, 2024 EDT
Innovating with Google Cloud Artificial Intelligence Earned Feb 21, 2024 EST
Trust and Security with Google Cloud Earned Feb 21, 2024 EST
Scaling with Google Cloud Operations Earned Feb 21, 2024 EST
Modernize Infrastructure and Applications with Google Cloud Earned Feb 21, 2024 EST
Exploring Data Transformation with Google Cloud Earned Feb 21, 2024 EST
Digital Transformation with Google Cloud Earned Feb 3, 2024 EST
Logging and Monitoring in Google Cloud Earned Dec 7, 2023 EST
Machine Learning Operations (MLOps) with Vertex AI: Manage Features Earned Oct 9, 2023 EDT
Google Cloud 上的 AI 和机器学习简介 Earned Oct 5, 2023 EDT
Generative AI Fundamentals - 简体中文 Earned Aug 16, 2023 EDT
负责任的 AI 简介 Earned Aug 16, 2023 EDT
大型语言模型简介 Earned Aug 16, 2023 EDT
生成式 AI 简介 Earned Aug 16, 2023 EDT
Preparing for your Professional Cloud Architect Journey Earned Jul 5, 2023 EDT
Preparing for Your Associate Cloud Engineer Journey Earned Jun 19, 2023 EDT
Getting Started with Terraform for Google Cloud Earned Jun 3, 2023 EDT
Google Kubernetes Engine 使用入门 Earned Jun 1, 2023 EDT
在 Google Cloud 中实施 DevOps 工作流 Earned May 31, 2023 EDT
Developing a Google SRE Culture Earned May 24, 2023 EDT
在 Google Cloud 中使用 Kubernetes Earned Feb 4, 2022 EST
DEPRECATED Cloud Architecture Earned Feb 1, 2022 EST
基准:基础架构 Earned Jan 29, 2022 EST
可靠的 Google Cloud 基础设施: 设计和流程 Earned Jan 20, 2022 EST
云工程 Earned Jan 18, 2022 EST
Google Cloud 弹性基础设施:扩缩和自动化 Earned Jan 18, 2022 EST
Google Cloud 重要基础设施:核心服务 Earned Jan 17, 2022 EST
Google Cloud 重要基础设施:基础 Earned Jan 16, 2022 EST
Google Cloud 基础知识:核心基础设施 Earned Jan 14, 2022 EST
在 Google Cloud 上设置应用开发环境 Earned Jan 13, 2022 EST
在 Google Cloud 上为机器学习 API 准备数据 Earned Nov 26, 2021 EST
利用 BigQuery ML 构建预测模型时的数据工程处理 Earned Nov 24, 2021 EST
Machine Learning APIs Earned Nov 23, 2021 EST
DEPRECATED Explore Machine Learning Models with Explainable AI Earned Nov 22, 2021 EST
Machine Learning Operations (MLOps): Getting Started Earned Nov 15, 2021 EST
Data Science on Google Cloud Earned Nov 10, 2021 EST
Scientific Data Processing Earned Nov 9, 2021 EST
Production Machine Learning Systems Earned Nov 9, 2021 EST
Machine Learning in the Enterprise Earned Nov 8, 2021 EST
Feature Engineering Earned Nov 5, 2021 EDT
Launching into Machine Learning Earned Nov 2, 2021 EDT
Modernizing Data Lakes and Data Warehouses with Google Cloud Earned Nov 1, 2021 EDT
Smart Analytics, Machine Learning, and AI on Google Cloud Earned Nov 1, 2021 EDT
Building Resilient Streaming Analytics Systems on Google Cloud Earned Nov 1, 2021 EDT
How Google Does Machine Learning Earned Oct 29, 2021 EDT
[DEPRECATED] Data Engineering Earned Oct 29, 2021 EDT
基准:数据、机器学习和 AI Earned Oct 28, 2021 EDT
Google Cloud Essentials Earned Oct 27, 2021 EDT
Google Cloud Big Data and Machine Learning Fundamentals Earned Oct 26, 2021 EDT

This course was designed to give learners a comprehensive understanding of Google Workspace core services. Learners will explore enabling, disabling, and configuring settings for these services, including Gmail, Calendar, Drive, Meet, Chat, and Docs. Next, they'll learn how to deploy and manage Gemini to empower their users. Finally, learners will examine use cases for AppSheet and Apps Script to automate tasks and extend the functionality of Google Workspace applications.

了解详情

This course was designed to provide an understanding of user and resource management in Google Workspace. Learners will explore the configuration of organizational units to align with their organization's needs. Additionally, learners will discover how to manage various types of Google Groups. They will also develop expertise in managing domain settings within Google Workspace. Finally, learners will master the optimization and structuring of resources within their Google Workspace environment.

了解详情

人工智能 (AI) 具备巨大的变革潜力,但也带来了新的安全挑战。本课程专为负责安全性和数据保护的领导者而设计,助其运用相关策略在组织内安全管理 AI。学习一个有助于实现以下目标的框架:主动识别并减轻 AI 特有的风险,保护敏感数据,确保遵从法规,构建弹性 AI 基础设施。通过四个不同行业的精选用例,探索这些策略如何应用于现实场景。

了解详情

本课程致力于为您提供所需的知识和工具,让您能够了解 MLOps 团队在部署和管理生成式 AI 模型以及探索 Vertex AI 如何帮助 AI 团队简化 MLOps 流程时面临的独特挑战,并帮助您在生成式 AI 项目中取得成功。

了解详情

“生成式 AI: 剖析基本概念”是 Generative AI Leader 学习路线中的第二门课程。在本课程中,您将了解生成式 AI 的基本概念。您要探索 AI、机器学习和生成式 AI 之间的区别,了解各种数据类型如何赋能生成式 AI,从而应对各种业务挑战。您还将深入了解 Google Cloud 应对基础模型局限性的策略,以及负责任和安全的 AI 开发与部署面临着哪些关键挑战。

了解详情

“生成式 AI:不只是聊天机器人”是 Generative AI Leader 学习路线中的第一门课程。学习本课程没有知识门槛。本课程旨在帮助您超越对聊天机器人的基本认知,探索生成式 AI技术为您的组织带来的真正潜力。您将探索基础模型和提示工程等概念,这些知识对利用生成式 AI 的强大功能至关重要。本课程还将说明,为组织制定成功的生成式 AI 策略时,需要考虑哪些重要因素。

了解详情

This course introduces the Cloud Run serverless platform for running applications. In this course, you learn about the fundamentals of Cloud Run, its resource model and the container lifecycle. You learn about service identities, how to control access to services, and how to develop and test your application locally before deploying it to Cloud Run. The course also teaches you how to integrate with other services on Google Cloud so you can build full-featured applications.

了解详情

完成设置 Google Cloud 网络课程,赢取技能徽章, 您将了解如何在 Google Cloud Platform 上执行基本的网络组建和管理任务 - 创建自定义网络、添加子网防火墙规则,然后创建虚拟机并测试 虚拟机之间相互通信时的延迟时间。 技能徽章是由 Google Cloud 颁发的专有数字徽章, 旨在认可您在 Google Cloud 产品与服务方面的熟练度; 该课程会检验您在交互式实操环境中 运用所学知识的能力。完成此技能徽章课程和作为最终评估的实验室挑战赛, 即可获得数字徽章,并在您的圈子中秀一秀。

了解详情

完成 云架构:设计、实施和管理课程,赢取技能徽章,展示您在以下方面的技能:使用 Apache Web 服务器部署可公开访问的网站;使用启动脚本配置 Compute Engine 虚拟机; 使用 Windows 堡垒主机和防火墙规则配置安全 RDP;构建 Docker 映像并将其部署到 Kubernetes 集群,然后进行更新;以及创建 CloudSQL 实例并导入 MySQL 数据库。 此技能徽章课程是非常有用的资源, 可帮助您理解 Google Cloud 认证 Professional Cloud Architect 认证考试中将会出现的主题。 技能徽章 是由 Google Cloud 颁发的专属数字徽章,旨在认可 您在 Google Cloud 产品与服务方面的熟练度;您需要在 交互式实操环境中参加考核,证明自己运用所学知识的能力后才能获得。完成此技能 徽章课程和作为最终评估的实验室挑战赛,即可获得技能徽章, 在您的人际圈中炫出自己的技能。

了解详情

完成入门级使用 Google Cloud Observability 进行监控和记录技能徽章课程, 展示自己在以下方面的技能:监控 Compute Engine 中的虚拟机; 利用 Cloud Monitoring 监控多个项目;将监控和日志记录功能扩展到 Cloud Functions; 创建和发送自定义应用指标;以及根据自定义指标配置 Cloud Monitoring 提醒。

了解详情

In this course, you will learn the basic skills to implement secure and efficient DevSecOps practices on Google Cloud. You'll learn how to secure your development pipeline with Google Cloud services like Artifact Registry, Cloud Build, Cloud Deploy, and Binary Authorization. This enables you to build, test, and deploy containerized applications with security controls throughout the CI/CD pipeline.

了解详情

完成入门级在 Compute Engine 上实现负载均衡技能徽章课程,展示自己在以下方面的技能: 编写 gcloud 命令和使用 Cloud Shell,在 Compute Engine 中创建和部署虚拟机, 以及配置网络和 HTTP 负载均衡器。 技能徽章是由 Google Cloud 颁发的专属数字徽章, 旨在认可您在 Google Cloud 产品与服务方面的熟练度; 该课程会检验您在交互式实操环境中运用所学知识的 能力。完成此技能徽章课程和作为最终评估的实验室挑战赛, 即可获得技能徽章,并在您的圈子中秀一秀。

了解详情

Welcome to the second part of the two part course, Observability in Google Cloud. This course is all about application performance management tools, including Error Reporting, Cloud Trace, and Cloud Profiler.

了解详情

This course helps learners create a study plan for the PMLE (Professional Machine Learning Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

了解详情

This is the fifth of five courses in the Google Cloud Cybersecurity Certificate. In this course, you’ll combine and apply key concepts such as cloud security principles, risk management, identifying vulnerabilities, incident management, and crisis communications in an interactive capstone project. Additionally, you'll finalize your resume updates and put to practice all the new interview techniques you've learned, preparing you to confidently apply for and interview for jobs in the field.

了解详情

This is the fourth of five courses in the Google Cloud Cybersecurity Certificate. In this course, you’ll focus on developing capabilities in logging, security, and alert monitoring, along with techniques for mitigating attacks. You'll gain valuable knowledge in customizing threat feeds, managing incidents, handling crisis communications, conducting root cause analysis, and mastering incident response and post-event communications. Using Google Cloud tools, you'll learn to identify indicators of compromise and prepare for business continuity and disaster recovery. Alongside these technical skills, you'll continue updating your resume and practicing interview techniques.

了解详情

This is the third of five courses in the Google Cloud Cybersecurity Certificate. In this course, you’ll explore the principles of identity management and access control within a cloud environment, covering key elements like AAA (Authentication, Authorization, and Auditing), credential handling, and certificate management. You'll also explore essential topics in threat and vulnerability management, cloud-native principles, and data protection measures. Upon completing this course, you will have acquired the skills and knowledge necessary to secure cloud-based resources and safeguard sensitive organizational information. Additionally, you'll continue to engage with career resources and hone your interview techniques, preparing you for the next step in your professional journey.

了解详情

This is the second of five courses in the Google Cloud Cybersecurity Certificate. In this course, you’ll explore widely-used cloud risk management frameworks, exploring security domains, compliance lifecycles, and industry standards such as HIPAA, NIST CSF, and SOC. You'll develop skills in risk identification, implementation of security controls, compliance evaluation, and data protection management. Additionally, you'll gain hands-on experience with Google Cloud and multi-cloud tools specific to risk and compliance. This course also incorporates job application and interview preparation techniques, offering a comprehensive foundation to understand and effectively navigate the complex landscape of cloud risk management.

了解详情

This is the first of five courses in the Google Cloud Cybersecurity Certificate. In this course, you’ll explore the essentials of cybersecurity, including the security lifecycle, digital transformation, and key cloud computing concepts. You’ll identify common tools used by entry-level cloud security analysts to automate tasks.

了解详情

Artificial intelligence (AI) and machine learning (ML) represent an important evolution in information technologies that are quickly transforming a wide range of industries. “Innovating with Google Cloud Artificial Intelligence” explores how organizations can use AI and ML to transform their business processes. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

了解详情

As organizations move their data and applications to the cloud, they must address new security challenges. The Trust and Security with Google Cloud course explores the basics of cloud security, the value of Google Cloud's multilayered approach to infrastructure security, and how Google earns and maintains customer trust in the cloud. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

了解详情

Organizations of all sizes are embracing the power and flexibility of the cloud to transform how they operate. However, managing and scaling cloud resources effectively can be a complex task. Scaling with Google Cloud Operations explores the fundamental concepts of modern operations, reliability, and resilience in the cloud, and how Google Cloud can help support these efforts. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

了解详情

Many traditional enterprises use legacy systems and applications that can't stay up-to-date with modern customer expectations. Business leaders often have to choose between maintaining their aging IT systems or investing in new products and services. "Modernize Infrastructure and Applications with Google Cloud" explores these challenges and offers solutions to overcome them by using cloud technology. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

了解详情

Cloud technology can bring great value to an organization, and combining the power of cloud technology with data has the potential to unlock even more value and create new customer experiences. “Exploring Data Transformation with Google Cloud” explores the value data can bring to an organization and ways Google Cloud can make data useful and accessible. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

了解详情

There's much excitement about cloud technology and digital transformation, but often many unanswered questions. For example: What is cloud technology? What does digital transformation mean? How can cloud technology help your organization? Where do you even begin? If you've asked yourself any of these questions, you're in the right place. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey. If you want to learn about cloud technology so you can excel in your role and help build the future of your business, then this introductory course on digital transformation is for you. This course is part of the Cloud Digital Leader learning path.

了解详情

This course teaches participants techniques for monitoring and improving infrastructure and application performance in Google Cloud. Using a combination of presentations, demos, hands-on labs, and real-world case studies, attendees gain experience with full-stack monitoring, real-time log management and analysis, debugging code in production, tracing application performance bottlenecks, and profiling CPU and memory usage.

了解详情

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Learners will get hands-on practice using Vertex AI Feature Store's streaming ingestion at the SDK layer.

了解详情

本课程介绍 Google Cloud 中的 AI 和机器学习 (ML) 服务,这些服务可构建预测式和生成式 AI 项目。本课程探讨从数据到 AI 的整个生命周期中可用的技术、产品和工具,包括 AI 基础、开发和解决方案。通过引人入胜的学习体验和实操练习,本课程可帮助数据科学家、AI 开发者和机器学习工程师提升技能和知识水平。

了解详情

完成 Introduction to Generative AI、Introduction to Large Language Models 和 Introduction to Responsible AI 三门课程,赢取技能徽章。通过最终测验,即表明您理解了生成式 AI 的基本概念。 技能徽章是由 Google Cloud 颁发的数字徽章,旨在认可您对 Google Cloud 产品与服务的了解程度。公开您的个人资料并将技能徽章添加到您的社交媒体个人资料中,以此来分享您获得的成就。

了解详情

这是一节入门级微课程,旨在解释什么是负责任的 AI、它的重要性,以及 Google 如何在自己的产品中实现负责任的 AI。此外,本课程还介绍了 Google 的 7 个 AI 开发原则。

了解详情

这是一节入门级微学习课程,探讨什么是大型语言模型 (LLM)、适合的应用场景以及如何使用提示调整来提升 LLM 性能,还介绍了可以帮助您开发自己的 Gen AI 应用的各种 Google 工具。

了解详情

这是一节入门级微课程,旨在解释什么是生成式 AI、它的用途以及与传统机器学习方法的区别。该课程还介绍了可以帮助您开发自己的生成式 AI 应用的各种 Google 工具。

了解详情

This course helps learners create a study plan for the PCA (Professional Cloud Architect) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

了解详情

This course helps you structure your preparation for the Associate Cloud Engineer exam. You will learn about the Google Cloud domains covered by the exam and how to create a study plan to improve your domain knowledge.

了解详情

This course provides an introduction to using Terraform for Google Cloud. It enables learners to describe how Terraform can be used to implement infrastructure as code and to apply some of its key features and functionalities to create and manage Google Cloud infrastructure. Learners will get hands-on practice building and managing Google Cloud resources using Terraform.

了解详情

欢迎学习“Google Kubernetes Engine 使用入门”课程。Kubernetes 是位于应用和硬件基础架构之间的软件层,如果您对 Kubernetes 感兴趣,那就来对地方了!Google Kubernetes Engine 将 Kubernetes 作为 Google Cloud 上的代管式服务提供给您使用。 本课程的目标是介绍 Google Kubernetes Engine(通常称为 GKE)的基础知识,以及将应用容器化并在 Google Cloud 中运行的方法。本课程首先介绍 Google Cloud 的基础知识,然后概述容器、Kubernetes、Kubernetes 架构以及 Kubernetes 操作。

了解详情

完成在 Google Cloud 中实施 DevOps 工作流技能徽章中级课程, 展示您在以下方面的技能:利用 Cloud Source Repositories 创建 git 代码库; 在 Google Kubernetes Engine (GKE) 上启动、管理和扩缩 Deployment; 设计 CI/CD 流水线架构,以自动构建容器映像并将其部署到 GKE。 技能徽章是由 Google Cloud 颁发的专属数字徽章,旨在认可 您在 Google Cloud 产品与服务方面的熟练度;您需要在 交互式实操环境中参加考核,证明自己运用所学知识的能力后才能获得。完成此技能 徽章课程和作为最终评估的实验室挑战赛,获得技能徽章, 在您的人际圈中炫出自己的技能。

了解详情

In many IT organizations, incentives are not aligned between developers, who strive for agility, and operators, who focus on stability. Site reliability engineering, or SRE, is how Google aligns incentives between development and operations and does mission-critical production support. Adoption of SRE cultural and technical practices can help improve collaboration between the business and IT. This course introduces key practices of Google SRE and the important role IT and business leaders play in the success of SRE organizational adoption.

了解详情

Kubernetes 是最受欢迎的容器编排系统, Google Kubernetes Engine 专为支持 Google Cloud 中的托管式 Kubernetes 部署 而设计。在本高级课程中,您将亲自动手配置 Docker 映像、容器,并部署功能完备的 Kubernetes Engine 应用。 此课程将帮助您掌握在工作流中集成容器编排所需的 实用技能。 想要参加实操实验室挑战赛, 展示您的技能并检验所学知识?完成本课程后,不妨继续参与这项额外的 实验室挑战赛,赢得 Google Cloud 专属数字徽章。 该挑战赛位于在 Google Cloud 上部署 Kubernetes 应用课程的结尾处。

了解详情

This fundamental-level quest is unique amongst the other quest offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Cloud Architect Certification. From IAM, to networking, to Kubernetes engine deployment, this quest is composed of specific labs that will put your Google Cloud knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, we recommend that you also review the exam guide and other available preparation resources.

了解详情

如果您是一位入门级云开发者, 在学习了“Google Cloud 基础知识”课程之后,想要寻求真正的实操机会,这门课程就是您的不二之选。您将获得宝贵的实操经验, 通过多个实验深入探索 Cloud Storage 以及 Monitoring 和 Cloud Functions 等其他关键应用服务。您将掌握一系列宝贵技能, 在 Google Cloud 的任何计划中,这些技能都能发挥作用。

了解详情

本课程指导学员运用久经考验的设计模式在 Google Cloud 上构建高度可靠且高效的解决方案。它是“Google Compute Engine 架构设计”或“Google Kubernetes Engine 架构设计”课程的延续,并假定您有使用其中任何一门课程所涵盖技术的实践经验。通过一系列演示、设计活动和动手实验,学员可以了解如何定义及平衡业务要求和技术要求,以便设计可靠性和可用性高、安全且经济实惠的 Google Cloud 部署。

了解详情

在众多课程中,本入门课程独具特色。 这些实验经过精心设计,旨在让 IT 专业人员通过实践掌握 Google Cloud 认证 Associate Cloud Engineer 考核中的各项主题和服务内容。从 IAM 到网络组建和管理, 再到 Kubernetes Engine 部署,本课程将通过特定实验 检验您的 Google Cloud 知识掌握情况。请注意,虽然这些实操 实验有助于提升您的技能和能力,我们仍建议您同时查阅 考试指南和其他可用的备考资源。

了解详情

这是一套自助式速成课程,向学员介绍 Google Cloud 提供的灵活全面的基础架构和平台服务。学员将通过一系列视频讲座、演示和实操实验,探索和部署各种解决方案元素,包括安全互连网络、负载均衡、自动扩缩、基础架构自动化和代管式服务。

了解详情

这门自助式速成课程向学员介绍 Google Cloud 提供的灵活全面的基础架构和平台服务,着重介绍了 Compute Engine。学员将通过一系列视频讲座、演示和动手实验,探索和部署各种解决方案元素,包括网络、系统和应用服务等基础架构组件。本课程的内容还包括如何部署实用的解决方案,包括客户提供的加密密钥、安全和访问权限管理、配额和结算,以及资源监控。

了解详情

这门自助式速成课程向学员介绍 Google Cloud 提供的灵活全面的基础架构和平台服务,其中着重介绍了 Compute Engine。学员将通过一系列视频讲座、演示和动手实验,探索和部署各种解决方案元素,包括网络、虚拟机和应用服务等基础架构组件。您将学习如何通过控制台和 Cloud Shell 使用 Google Cloud。您还将了解云架构师角色、基础架构设计方法以及虚拟网络配置和虚拟私有云 (VPC)、项目、网络、子网、IP 地址、路由及防火墙规则。

了解详情

“Google Cloud 基础知识:核心基础设施”介绍在使用 Google Cloud 时会遇到的重要概念和术语。本课程通过视频和实操实验来介绍并比较 Google Cloud 的多种计算和存储服务,并提供重要的资源和政策管理工具。

了解详情

完成“在 Google Cloud 上设置应用开发环境”课程,赢取技能徽章;通过该课程,您将了解如何使用以下技术的基本功能来构建和连接以存储为中心的云基础设施: Cloud Storage、Identity and Access Management、Cloud Functions 和 Pub/Sub。 技能徽章是由 Google Cloud 颁发的专属数字徽章, 旨在认可您在 Google Cloud 产品与服务方面的熟练度;您需要在交互式实操环境中参加考核,证明自己运用所学知识的能力后才能获得。完成此技能徽章课程和作为最终评估的实验室挑战赛,获得技能徽章,在您的人际圈中炫出自己的技能。

了解详情

完成入门级技能徽章课程在 Google Cloud 上为机器学习 API 准备数据,展示以下技能: 使用 Dataprep by Trifacta 清理数据、在 Dataflow 中运行数据流水线、在 Dataproc 中创建集群和运行 Apache Spark 作业,以及调用机器学习 API,包括 Cloud Natural Language API、Google Cloud Speech-to-Text API 和 Video Intelligence API。 技能徽章是由 Google Cloud 颁发的专属数字徽章,旨在认可您在 Google Cloud 产品与服务方面的熟练度; 您需要在交互式实操环境中参加考核,证明自己运用所学知识的能力后才能获得。完成此技能徽章课程和作为最终评估的实验室挑战赛, 获得技能徽章,在您的人际圈中炫出自己的技能。

了解详情

完成中级技能徽章课程利用 BigQuery ML 构建预测模型时的数据工程处理, 展示自己在以下方面的技能:利用 Dataprep by Trifacta 构建 BigQuery 数据转换流水线; 利用 Cloud Storage、Dataflow 和 BigQuery 构建提取、转换和加载 (ETL) 工作流; 以及利用 BigQuery ML 构建机器学习模型。 技能徽章是由 Google Cloud 颁发的专属数字徽章,旨在认可 您对 Google Cloud 产品与服务的熟练度;您需要在 交互式实操环境中参加考核,证明自己运用所学知识的能力后才能获得此徽章。完成技能徽章课程和 作为最终评估的实验室挑战赛,即可获得数字徽章, 在您的人际圈中炫出自己的技能。

了解详情

It's no secret that machine learning is one of the fastest growing fields in tech, and Google Cloud has been instrumental in furthering its development. With a host of APIs, Google Cloud has a tool for just about any machine learning job. In this advanced-level course, you will get hands-on practice with machine learning APIs by taking labs like Detect Labels, Faces, and Landmarks in Images with the Cloud Vision API. Looking for a hands-on challenge lab to demonstrate your skills and validate your knowledge? Enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google Cloud digital badge.

了解详情

Earn a skill badge by completing the Explore Machine Learning Models with Explainable AI quest, where you will learn how to do the following using Explainable AI: build and deploy a model to an AI platform for serving (prediction), use the What-If Tool with an image recognition model, identify bias in mortgage data using the What-If Tool, and compare models using the What-If Tool to identify potential bias. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge quest and the final assessment challenge lab to receive a skill badge that you can share with your network.

了解详情

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

了解详情

This is the first of two Quests of hands-on labs is derived from the exercises from the book Data Science on Google Cloud Platform, 2nd Edition by Valliappa Lakshmanan, published by O'Reilly Media, Inc. In this first Quest, covering up through chapter 8, you are given the opportunity to practice all aspects of ingestion, preparation, processing, querying, exploring and visualizing data sets using Google Cloud tools and services.

了解详情

Big data, machine learning, and scientific data? It sounds like the perfect match. In this advanced-level quest, you will get hands-on practice with GCP services like Big Query, Dataproc, and Tensorflow by applying them to use cases that employ real-life, scientific data sets. By getting experience with tasks like earthquake data analysis and satellite image aggregation, Scientific Data Processing will expand your skill set in big data and machine learning so you can start tackling your own problems across a spectrum of scientific disciplines.

了解详情

This course covers how to implement the various flavors of production ML systems— static, dynamic, and continuous training; static and dynamic inference; and batch and online processing. You delve into TensorFlow abstraction levels, the various options for doing distributed training, and how to write distributed training models with custom estimators. This is the second course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Image Understanding with TensorFlow on Google Cloud course.

了解详情

This course takes a real-world approach to the ML Workflow through a case study. An ML team faces several ML business requirements and use cases. The team must understand the tools required for data management and governance and consider the best approach for data preprocessing. The team is presented with three options to build ML models for two use cases. The course explains why they would use AutoML, BigQuery ML, or custom training to achieve their objectives.

了解详情

This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.

了解详情

The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.

了解详情

The two key components of any data pipeline are data lakes and warehouses. This course highlights use-cases for each type of storage and dives into the available data lake and warehouse solutions on Google Cloud in technical detail. Also, this course describes the role of a data engineer, the benefits of a successful data pipeline to business operations, and examines why data engineering should be done in a cloud environment. This is the first course of the Data Engineering on Google Cloud series. After completing this course, enroll in the Building Batch Data Pipelines on Google Cloud course.

了解详情

Incorporating machine learning into data pipelines increases the ability to extract insights from data. This course covers ways machine learning can be included in data pipelines on Google Cloud. For little to no customization, this course covers AutoML. For more tailored machine learning capabilities, this course introduces Notebooks and BigQuery machine learning (BigQuery ML). Also, this course covers how to productionalize machine learning solutions by using Vertex AI.

了解详情

Processing streaming data is becoming increasingly popular as streaming enables businesses to get real-time metrics on business operations. This course covers how to build streaming data pipelines on Google Cloud. Pub/Sub is described for handling incoming streaming data. The course also covers how to apply aggregations and transformations to streaming data using Dataflow, and how to store processed records to BigQuery or Bigtable for analysis. Learners get hands-on experience building streaming data pipeline components on Google Cloud by using QwikLabs.

了解详情

This course explores what ML is and what problems it can solve. The course also discusses best practices for implementing machine learning. You’re introduced to Vertex AI, a unified platform to quickly build, train, and deploy AutoML machine learning models. The course discusses the five phases of converting a candidate use case to be driven by machine learning, and why it’s important to not skip them. The course ends with recognizing the biases that ML can amplify and how to recognize them.

了解详情

This advanced-level quest is unique amongst the other catalog offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Data Engineer Certification. From Big Query, to Dataprep, to Cloud Composer, this quest is composed of specific labs that will put your Google Cloud data engineering knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, you will need other preparation, too. The exam is quite challenging and external studying, experience, and/or background in cloud data engineering is recommended. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of the Engineer Data in the Google Cloud to receive an exclusive Google Cloud digital badge.

了解详情

大数据、机器学习和人工智能是当今计算领域的热门话题, 但这些领域的专业性很强,因而很难找到 入门资料。幸运的是,Google Cloud 在这些领域提供了方便用户使用的服务, 通过本入门级课程,您可以 开始学习使用 BigQuery、Cloud Speech API 和 Video Intelligence 等工具。

了解详情

在此入门级挑战任务中,您可以使用 Google Cloud Platform 的基本工具和服务,开展真枪实弹的操作实训。“GCP 基本功能”是我们为 Google Cloud 学员推荐的第一项挑战任务。云知识储备微乎其微甚至零基础?不用担心!这项挑战任务会为您提供真枪实弹的实操经验,助您快速上手 GCP 项目。无论是要编写 Cloud Shell 命令还是部署您的第一台虚拟机,亦或是通过负载平衡机制或在 Kubernetes Engine 上运行应用,都可以通过“GCP 基本功能”了解该平台的基本功能之精要。点此观看 1 分钟视频,了解每个实验涉及的主要概念。

了解详情

This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.

了解详情