Matt Regojos
Menjadi anggota sejak 2021
Gold League
58405 poin
Menjadi anggota sejak 2021
This course was designed to give learners a comprehensive understanding of Google Workspace core services. Learners will explore enabling, disabling, and configuring settings for these services, including Gmail, Calendar, Drive, Meet, Chat, and Docs. Next, they'll learn how to deploy and manage Gemini to empower their users. Finally, learners will examine use cases for AppSheet and Apps Script to automate tasks and extend the functionality of Google Workspace applications.
This course was designed to provide an understanding of user and resource management in Google Workspace. Learners will explore the configuration of organizational units to align with their organization's needs. Additionally, learners will discover how to manage various types of Google Groups. They will also develop expertise in managing domain settings within Google Workspace. Finally, learners will master the optimization and structuring of resources within their Google Workspace environment.
Kecerdasan Buatan (AI) menawarkan peluang melakukan perubahan transformatif, tetapi juga memunculkan tantangan keamanan baru. Kursus ini membekali para pemimpin keamanan dan perlindungan data dengan strategi untuk mengelola AI secara aman dalam organisasi mereka. Mempelajari framework untuk secara proaktif mengidentifikasi dan memitigasi risiko khusus AI, melindungi data sensitif, memastikan kepatuhan, dan membangun infrastruktur AI yang tangguh. Memilih kasus penggunaan dari empat industri berbeda untuk mengeksplorasi penerapan strategi ini dalam skenario dunia nyata.
Kursus ini dikhususkan untuk membekali Anda dengan pengetahuan dan alat yang diperlukan guna mengungkap tantangan unik yang dihadapi oleh tim MLOps saat men-deploy dan mengelola model AI Generatif, serta mengeksplorasi cara Vertex AI memberdayakan tim AI dalam menyederhanakan proses MLOps dan mencapai keberhasilan dalam project AI Generatif.
Gen AI: Unlock Foundational Concepts is the second course of the Gen AI Leader learning path. In this course, you unlock the foundational concepts of generative AI by exploring the differences between AI, ML, and gen AI, and understanding how various data types enable generative AI to address business challenges. You also gain insights into Google Cloud strategies to address the limitations of foundation models and the key challenges for responsible and secure AI development and deployment.
AI Generatif: Lebih dari Sekadar Chatbot adalah kursus pertama dari alur pembelajaran Generative AI Leader. Kursus ini tidak memiliki prasyarat. Kursus ini bertujuan untuk melampaui pemahaman dasar tentang chatbot guna mengeksplorasi potensi sebenarnya dari AI generatif untuk organisasi Anda. Anda akan mempelajari konsep seperti model dasar dan rekayasa perintah, yang penting untuk memanfaatkan kekuatan AI generatif. Kursus ini juga memandu Anda melalui pertimbangan penting yang harus Anda buat saat mengembangkan strategi AI generatif yang sukses untuk organisasi Anda.
This course introduces the Cloud Run serverless platform for running applications. In this course, you learn about the fundamentals of Cloud Run, its resource model and the container lifecycle. You learn about service identities, how to control access to services, and how to develop and test your application locally before deploying it to Cloud Run. The course also teaches you how to integrate with other services on Google Cloud so you can build full-featured applications.
Dapatkan badge keahlian dengan menyelesaikan kursus Menyiapkan Jaringan Google Cloud, untuk mempelajari cara menjalankan tugas-tugas networking dasar di Google Cloud Platform, yakni membuat jaringan kustom, menambahkan aturan firewall subnet, lalu membuat VM dan menguji latensi saat VM berkomunikasi satu sama lain. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud, serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktik yang interaktif. Selesaikan badge keahlian ini dan penilaian akhir challenge lab untuk menerima badge digital yang dapat Anda bagikan dengan jaringan Anda.
Dapatkan badge keahlian dengan menyelesaikan kursus Arsitektur Cloud: Merancang, Mengimplementasikan, dan Mengelola untuk menunjukkan keahlian Anda dalam hal berikut: men-deploy situs yang dapat diakses secara publik menggunakan server web Apache, mengonfigurasi VM Compute Engine menggunakan skrip startup, mengonfigurasi RDP yang aman menggunakan Bastion host Windows dan aturan firewall, membangun dan men-deploy image Docker ke cluster Kubernetes serta kemudian mengupdatenya, membuat instance CloudSQL, dan mengimpor database MySQL. Kursus badge keahlian ini merupakan referensi yang bagus untuk memahami topik yang akan muncul di ujian sertifikasi Professional Cloud Architect Tersertifikasi Google Cloud. Badge keahlian merupakan badge digital eksklusif yang diberikan oleh Google Cloud sebagian pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktis yang interaktif. Selesaikan kursu…
Selesaikan badge keahlian pengantar Memantau dan Membuat Log dengan Google Cloud Observability untuk menunjukkan kemahiran dalam hal berikut: memantau virtual machine di Compute Engine, menggunakan Cloud Monitoring untuk pengawasan multi-project, memperluas kemampuan pemantauan dan logging ke Cloud Functions, membuat dan mengirimkan metrik aplikasi kustom, serta mengonfigurasi pemberitahuan Cloud Monitoring berdasarkan metrik kustom. Badge keahlian merupakan badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktis yang interaktif. Selesaikan kursus badge keahlian ini dan challenge lab penilaian akhir untuk menerima badge keahlian yang dapat Anda bagikan ke jaringan Anda.
In this course, you will learn the basic skills to implement secure and efficient DevSecOps practices on Google Cloud. You'll learn how to secure your development pipeline with Google Cloud services like Artifact Registry, Cloud Build, Cloud Deploy, and Binary Authorization. This enables you to build, test, and deploy containerized applications with security controls throughout the CI/CD pipeline.
Selesaikan pengantar badge keahlian Mengimplementasikan Load Balancing di Compute Engine untuk menunjukkan keterampilan berikut ini: menulis perintah gcloud dan menggunakan Cloud Shell, membuat dan men-deploy virtual machine di Compute Engine, serta mengonfigurasi jaringan dan load balancer HTTP. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan yang interaktif. Selesaikan badge keahlian ini, dan penilaian akhir Challenge Lab, untuk menerima badge keahlian yang dapat Anda bagikan dengan jaringan Anda.
Welcome to the second part of the two part course, Observability in Google Cloud. This course is all about application performance management tools, including Error Reporting, Cloud Trace, and Cloud Profiler.
This course helps learners create a study plan for the PMLE (Professional Machine Learning Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.
This is the fifth of five courses in the Google Cloud Cybersecurity Certificate. In this course, you’ll combine and apply key concepts such as cloud security principles, risk management, identifying vulnerabilities, incident management, and crisis communications in an interactive capstone project. Additionally, you'll finalize your resume updates and put to practice all the new interview techniques you've learned, preparing you to confidently apply for and interview for jobs in the field.
This is the fourth of five courses in the Google Cloud Cybersecurity Certificate. In this course, you’ll focus on developing capabilities in logging, security, and alert monitoring, along with techniques for mitigating attacks. You'll gain valuable knowledge in customizing threat feeds, managing incidents, handling crisis communications, conducting root cause analysis, and mastering incident response and post-event communications. Using Google Cloud tools, you'll learn to identify indicators of compromise and prepare for business continuity and disaster recovery. Alongside these technical skills, you'll continue updating your resume and practicing interview techniques.
This is the third of five courses in the Google Cloud Cybersecurity Certificate. In this course, you’ll explore the principles of identity management and access control within a cloud environment, covering key elements like AAA (Authentication, Authorization, and Auditing), credential handling, and certificate management. You'll also explore essential topics in threat and vulnerability management, cloud-native principles, and data protection measures. Upon completing this course, you will have acquired the skills and knowledge necessary to secure cloud-based resources and safeguard sensitive organizational information. Additionally, you'll continue to engage with career resources and hone your interview techniques, preparing you for the next step in your professional journey.
This is the second of five courses in the Google Cloud Cybersecurity Certificate. In this course, you’ll explore widely-used cloud risk management frameworks, exploring security domains, compliance lifecycles, and industry standards such as HIPAA, NIST CSF, and SOC. You'll develop skills in risk identification, implementation of security controls, compliance evaluation, and data protection management. Additionally, you'll gain hands-on experience with Google Cloud and multi-cloud tools specific to risk and compliance. This course also incorporates job application and interview preparation techniques, offering a comprehensive foundation to understand and effectively navigate the complex landscape of cloud risk management.
This is the first of five courses in the Google Cloud Cybersecurity Certificate. In this course, you’ll explore the essentials of cybersecurity, including the security lifecycle, digital transformation, and key cloud computing concepts. You’ll identify common tools used by entry-level cloud security analysts to automate tasks.
Artificial intelligence (AI) and machine learning (ML) represent an important evolution in information technologies that are quickly transforming a wide range of industries. “Innovating with Google Cloud Artificial Intelligence” explores how organizations can use AI and ML to transform their business processes. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
As organizations move their data and applications to the cloud, they must address new security challenges. The Trust and Security with Google Cloud course explores the basics of cloud security, the value of Google Cloud's multilayered approach to infrastructure security, and how Google earns and maintains customer trust in the cloud. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Organizations of all sizes are embracing the power and flexibility of the cloud to transform how they operate. However, managing and scaling cloud resources effectively can be a complex task. Scaling with Google Cloud Operations explores the fundamental concepts of modern operations, reliability, and resilience in the cloud, and how Google Cloud can help support these efforts. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Many traditional enterprises use legacy systems and applications that can't stay up-to-date with modern customer expectations. Business leaders often have to choose between maintaining their aging IT systems or investing in new products and services. "Modernize Infrastructure and Applications with Google Cloud" explores these challenges and offers solutions to overcome them by using cloud technology. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Cloud technology can bring great value to an organization, and combining the power of cloud technology with data has the potential to unlock even more value and create new customer experiences. “Exploring Data Transformation with Google Cloud” explores the value data can bring to an organization and ways Google Cloud can make data useful and accessible. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
There's much excitement about cloud technology and digital transformation, but often many unanswered questions. For example: What is cloud technology? What does digital transformation mean? How can cloud technology help your organization? Where do you even begin? If you've asked yourself any of these questions, you're in the right place. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey. If you want to learn about cloud technology so you can excel in your role and help build the future of your business, then this introductory course on digital transformation is for you. This course is part of the Cloud Digital Leader learning path.
This course teaches participants techniques for monitoring and improving infrastructure and application performance in Google Cloud. Using a combination of presentations, demos, hands-on labs, and real-world case studies, attendees gain experience with full-stack monitoring, real-time log management and analysis, debugging code in production, tracing application performance bottlenecks, and profiling CPU and memory usage.
This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Learners will get hands-on practice using Vertex AI Feature Store's streaming ingestion at the SDK layer.
Kursus ini memperkenalkan penawaran AI dan machine learning (ML) di Google Cloud yang membangun project AI prediktif dan generatif. Kursus ini akan membahas teknologi, produk, dan alat yang tersedia di seluruh siklus proses data ke AI, yang mencakup fondasi, pengembangan, dan solusi AI. Kursus ini bertujuan membantu data scientist, developer AI, dan engineer ML meningkatkan keterampilan dan pengetahuan mereka melalui pengalaman belajar yang menarik dan latihan praktik langsung.
Dapatkan badge keahlian dengan menyelesaikan kursus Introduction to Generative AI, Introduction to Large Language Models, dan Introduction to Responsible AI. Dengan berhasil menyelesaikan kuis akhir, Anda membuktikan pemahaman Anda tentang konsep dasar AI generatif. Badge keahlian adalah badge digital yang diberikan oleh Google Cloud sebagai pengakuan atas pengetahuan Anda tentang produk dan layanan Google Cloud. Pamerkan badge keahlian Anda dengan menampilkan profil Anda kepada publik dan menambahkannya ke profil media sosial Anda.
Ini adalah kursus pengantar pembelajaran mikro yang dimaksudkan untuk menjelaskan responsible AI, alasan pentingnya responsible AI, dan cara Google mengimplementasikan responsible AI dalam produknya. Kursus ini juga memperkenalkan 7 prinsip AI Google.
Ini adalah kursus pengantar pembelajaran mikro yang membahas definisi model bahasa besar (LLM), kasus penggunaannya, dan cara menggunakan prompt tuning untuk meningkatkan performa LLM. Kursus ini juga membahas beberapa alat Google yang dapat membantu Anda mengembangkan aplikasi AI Generatif Anda sendiri.
Ini adalah kursus pengantar pembelajaran mikro yang bertujuan untuk mendefinisikan AI Generatif, cara penggunaannya, dan perbedaannya dari metode machine learning konvensional. Kursus ini juga mencakup Alat-alat Google yang dapat membantu Anda mengembangkan aplikasi AI Generatif Anda sendiri.
This course helps learners create a study plan for the PCA (Professional Cloud Architect) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.
This course helps you structure your preparation for the Associate Cloud Engineer exam. You will learn about the Google Cloud domains covered by the exam and how to create a study plan to improve your domain knowledge.
This course provides an introduction to using Terraform for Google Cloud. It enables learners to describe how Terraform can be used to implement infrastructure as code and to apply some of its key features and functionalities to create and manage Google Cloud infrastructure. Learners will get hands-on practice building and managing Google Cloud resources using Terraform.
Welcome to the Getting Started with Google Kubernetes Engine course. If you're interested in Kubernetes, a software layer that sits between your applications and your hardware infrastructure, then you’re in the right place! Google Kubernetes Engine brings you Kubernetes as a managed service on Google Cloud. The goal of this course is to introduce the basics of Google Kubernetes Engine, or GKE, as it’s commonly referred to, and how to get applications containerized and running in Google Cloud. The course starts with a basic introduction to Google Cloud, and is then followed by an overview of containers and Kubernetes, Kubernetes architecture, and Kubernetes operations.
Selesaikan badge keahlian Mengimplementasikan Alur Kerja DevOps di Google Cloud tingkat menengah untuk menunjukkan keterampilan dalam hal berikut: membuat repositori git dengan Cloud Source Repositories, meluncurkan, mengelola, dan menskalakan deployment di Google Kubernetes Engine (GKE), serta merancang pipeline CI/CD yang mengotomatiskan pembangunan dan deployment image container ke GKE. Badge keahlian merupakan badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktis yang interaktif. Selesaikan kursus badge keahlian ini dan challenge lab penilaian akhir untuk menerima badge keahlian yang dapat Anda bagikan ke jaringan Anda.
In many IT organizations, incentives are not aligned between developers, who strive for agility, and operators, who focus on stability. Site reliability engineering, or SRE, is how Google aligns incentives between development and operations and does mission-critical production support. Adoption of SRE cultural and technical practices can help improve collaboration between the business and IT. This course introduces key practices of Google SRE and the important role IT and business leaders play in the success of SRE organizational adoption.
Kubernetes adalah sistem orkestrasi container paling populer, dan Google Kubernetes Engine dirancang secara khusus untuk mendukung deployment Kubernetes terkelola di Google Cloud. Dalam kursus tingkat lanjut ini, Anda akan mendapatkan praktik langsung dalam mengonfigurasi Image Docker, container, serta men-deploy aplikasi Kubernetes Engine yang sepenuhnya lengkap dan siap produksi. Kursus ini akan mengajari Anda keterampilan praktis yang diperlukan untuk mengintegrasikan orkestrasi container ke dalam alur kerja Anda sendiri. Apakah Anda sedang mencari challenge lab interaktif untuk menunjukkan keterampilan Anda dan menguji pengetahuan yang dimiliki? Setelah menyelesaikan kursus ini, selesaikan Challenge Lab tambahan di akhir kursus Men-deploy Aplikasi Kubernetes di Google Cloud untuk menerima badge digital eksklusif Google Cloud.
Quest level dasar ini berbeda dengan penawaran Qwiklabs lainnya. Semua lab yang termasuk dalam level ini telah diseleksi untuk membekali profesional IT dengan praktik langsung tentang berbagai topik dan layanan yang diujikan dalam Sertifikasi Google Cloud Certified Professional Cloud Architect . Dari IAM, hingga jaringan, dan penerapan Kubernetes Engine, quest ini tersusun atas sejumlah lab spesifik yang akan menguji pengetahuan Anda tentang GCP. Harap diketahui bahwa, meskipun praktik dengan lab ini akan meningkatkan keterampilan dan kemampuan Anda, sebaiknya Anda juga mempelajari panduan ujian serta referensi persiapan lain yang tersedia.
Jika Anda adalah developer cloud pemula yang mencari praktik langsung di luar Google Cloud Essentials, kursus ini cocok untuk Anda. Anda akan mendapatkan pengalaman praktis melalui lab yang mendalami Cloud Storage dan layanan aplikasi utama lainnya seperti Monitoring dan Cloud Functions. Anda akan mengembangkan keahlian berharga yang dapat diterapkan untuk inisiatif Google Cloud apa pun.
Kursus ini membekali peserta dengan keterampilan untuk membangun solusi yang sangat andal dan efisien di Google Cloud menggunakan pola desain yang telah terbukti. Kursus ini merupakan kelanjutan dari kursus Membangun dengan Google Compute Engine atau Membangun dengan Google Kubernetes Engine dan memberikan pengalaman interaktif dengan teknologi yang dibahas dalam kursus tersebut. Melalui kombinasi presentasi, aktivitas desain, dan lab interaktif, peserta akan mempelajari cara menentukan serta menyeimbangkan kebutuhan bisnis dan teknis untuk merancang deployment Google Cloud yang sangat andal, sangat tersedia, aman, dan hemat biaya.
Kursus pengantar ini unik dibandingkan penawaran kursus lainnya. Semua lab dalam kursus ini telah diseleksi untuk membekali profesional IT dengan praktik langsung terkait berbagai topik dan layanan yang muncul di Sertifikasi Associate Cloud Engineer yang Tersertifikasi Google Cloud. Dari IAM, networking, hingga deployment Kubernetes Engine, kursus ini terdiri atas beberapa lab khusus yang akan menguji pengetahuan Anda terkait Google Cloud. Perlu diketahui bahwa meskipun praktik dalam lab akan meningkatkan keterampilan dan kemampuan Anda, sebaiknya Anda juga meninjau panduan ujian dan referensi persiapan lainnya yang tersedia.
Kursus akselerasi sesuai permintaan ini memperkenalkan peserta pada infrastruktur dan layanan platform yang komprehensif dan fleksibel yang disediakan oleh Google Cloud. Melalui kombinasi video materi edukasi, demo, dan lab interaktif, peserta akan mengeksplorasi dan men-deploy berbagai elemen solusi, termasuk membuat interkoneksi jaringan yang aman, load balancing, penskalaan otomatis, otomatisasi infrastruktur, serta layanan terkelola.
Kursus akselerasi sesuai permintaan ini memperkenalkan peserta pada infrastruktur dan layanan platform yang komprehensif dan fleksibel yang disediakan oleh Google Cloud, dengan fokus pada Compute Engine. Melalui kombinasi video materi edukasi, demo, dan lab praktis, peserta akan mengeksplorasi dan men-deploy berbagai elemen solusi, termasuk komponen infrastruktur seperti jaringan, sistem, dan layanan aplikasi. Kursus ini juga membahas cara men-deploy solusi praktis termasuk kunci enkripsi yang disediakan pelanggan, pengelolaan keamanan dan akses, kuota dan penagihan, serta pemantauan resource.
Kursus akselerasi sesuai permintaan ini memperkenalkan peserta pada infrastruktur dan layanan platform yang komprehensif dan fleksibel yang disediakan oleh Google Cloud, dengan fokus pada Compute Engine. Melalui kombinasi video materi edukasi, demo, dan lab interaktif, peserta akan mengeksplorasi dan men-deploy berbagai elemen solusi, termasuk komponen infrastruktur seperti jaringan, virtual machine, dan layanan aplikasi. Anda akan mempelajari cara menggunakan Google Cloud melalui konsol dan Cloud Shell. Anda juga akan mempelajari peran arsitek cloud, pendekatan desain infrastruktur, dan konfigurasi networking virtual dengan Virtual Private Cloud (VPC), Project, Jaringan, Subnetwork, alamat IP, Rute, dan Aturan firewall.
Dasar-Dasar Google Cloud: Infrastruktur Inti memperkenalkan konsep dan terminologi penting untuk bekerja dengan Google Cloud. Melalui video dan lab interaktif, kursus ini menyajikan dan membandingkan banyak layanan komputasi dan penyimpanan Google Cloud, bersama dengan resource penting dan alat pengelolaan kebijakan.
Dapatkan badge keahlian dengan menyelesaikan kursus Menyiapkan Lingkungan Pengembangan Aplikasi di Google Cloud, yang memungkinkan Anda mempelajari cara membangun dan menghubungkan infrastruktur cloud yang berpusat pada penyimpanan menggunakan kemampuan dasar teknologi berikut: Cloud Storage, Identity and Access Management, Cloud Functions, dan Pub/Sub. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud, serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktik yang interaktif. Selesaikan badge keahlian ini dan challenge lab penilaian akhir untuk menerima badge keahlian yang dapat Anda bagikan dengan jaringan Anda.
Selesaikan badge keahlian pengantar Menyiapkan Data untuk ML API di Google Cloud untuk menunjukkan keterampilan Anda dalam hal berikut: menghapus data dengan Dataprep by Trifacta, menjalankan pipeline data di Dataflow, membuat cluster dan menjalankan tugas Apache Spark di Dataproc, dan memanggil beberapa ML API, termasuk Cloud Natural Language API, Google Cloud Speech-to-Text API, dan Video Intelligence API. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud s ebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktis yang interaktif. Selesaikan kursus badge keahlian ini dan challenge lab penilaian akhir, untuk menerima badge keahlian yang dapat Anda bagikan dengan jaringan Anda.
Selesaikan badge keahlian tingkat menengah Rekayasa Data untuk Pembuatan Model Prediktif dengan BigQuery ML untuk menunjukkan keterampilan Anda dalam hal berikut: membangun pipeline transformasi data ke BigQuery dengan Dataprep by Trifacta; menggunakan Cloud Storage, Dataflow, dan BigQuery untuk membangun alur kerja ekstrak, transformasi, dan pemuatan (ETL); serta membangun model machine learning menggunakan BigQuery ML. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktik yang interaktif. Selesaikan kursus badge keahlian dan challenge lab penilaian akhir untuk menerima badge digital yang dapat Anda bagikan ke jaringan Anda.
It's no secret that machine learning is one of the fastest growing fields in tech, and Google Cloud has been instrumental in furthering its development. With a host of APIs, Google Cloud has a tool for just about any machine learning job. In this advanced-level course, you will get hands-on practice with machine learning APIs by taking labs like Detect Labels, Faces, and Landmarks in Images with the Cloud Vision API. Looking for a hands-on challenge lab to demonstrate your skills and validate your knowledge? Enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google Cloud digital badge.
Earn a skill badge by completing the Explore Machine Learning Models with Explainable AI quest, where you will learn how to do the following using Explainable AI: build and deploy a model to an AI platform for serving (prediction), use the What-If Tool with an image recognition model, identify bias in mortgage data using the What-If Tool, and compare models using the What-If Tool to identify potential bias. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge quest and the final assessment challenge lab to receive a skill badge that you can share with your network.
This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.
This is the first of two Quests of hands-on labs is derived from the exercises from the book Data Science on Google Cloud Platform, 2nd Edition by Valliappa Lakshmanan, published by O'Reilly Media, Inc. In this first Quest, covering up through chapter 8, you are given the opportunity to practice all aspects of ingestion, preparation, processing, querying, exploring and visualizing data sets using Google Cloud tools and services.
Big data, machine learning, and scientific data? It sounds like the perfect match. In this advanced-level quest, you will get hands-on practice with GCP services like Big Query, Dataproc, and Tensorflow by applying them to use cases that employ real-life, scientific data sets. By getting experience with tasks like earthquake data analysis and satellite image aggregation, Scientific Data Processing will expand your skill set in big data and machine learning so you can start tackling your own problems across a spectrum of scientific disciplines.
This course covers how to implement the various flavors of production ML systems— static, dynamic, and continuous training; static and dynamic inference; and batch and online processing. You delve into TensorFlow abstraction levels, the various options for doing distributed training, and how to write distributed training models with custom estimators. This is the second course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Image Understanding with TensorFlow on Google Cloud course.
This course takes a real-world approach to the ML Workflow through a case study. An ML team faces several ML business requirements and use cases. The team must understand the tools required for data management and governance and consider the best approach for data preprocessing. The team is presented with three options to build ML models for two use cases. The course explains why they would use AutoML, BigQuery ML, or custom training to achieve their objectives.
This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.
The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.
The two key components of any data pipeline are data lakes and warehouses. This course highlights use-cases for each type of storage and dives into the available data lake and warehouse solutions on Google Cloud in technical detail. Also, this course describes the role of a data engineer, the benefits of a successful data pipeline to business operations, and examines why data engineering should be done in a cloud environment. This is the first course of the Data Engineering on Google Cloud series. After completing this course, enroll in the Building Batch Data Pipelines on Google Cloud course.
Incorporating machine learning into data pipelines increases the ability to extract insights from data. This course covers ways machine learning can be included in data pipelines on Google Cloud. For little to no customization, this course covers AutoML. For more tailored machine learning capabilities, this course introduces Notebooks and BigQuery machine learning (BigQuery ML). Also, this course covers how to productionalize machine learning solutions by using Vertex AI.
Processing streaming data is becoming increasingly popular as streaming enables businesses to get real-time metrics on business operations. This course covers how to build streaming data pipelines on Google Cloud. Pub/Sub is described for handling incoming streaming data. The course also covers how to apply aggregations and transformations to streaming data using Dataflow, and how to store processed records to BigQuery or Bigtable for analysis. Learners get hands-on experience building streaming data pipeline components on Google Cloud by using QwikLabs.
This course explores what ML is and what problems it can solve. The course also discusses best practices for implementing machine learning. You’re introduced to Vertex AI, a unified platform to quickly build, train, and deploy AutoML machine learning models. The course discusses the five phases of converting a candidate use case to be driven by machine learning, and why it’s important to not skip them. The course ends with recognizing the biases that ML can amplify and how to recognize them.
This advanced-level quest is unique amongst the other catalog offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Data Engineer Certification. From Big Query, to Dataprep, to Cloud Composer, this quest is composed of specific labs that will put your Google Cloud data engineering knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, you will need other preparation, too. The exam is quite challenging and external studying, experience, and/or background in cloud data engineering is recommended. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of the Engineer Data in the Google Cloud to receive an exclusive Google Cloud digital badge.
Big data, machine learning, dan kecerdasan buatan menjadi topik komputasi yang populer saat ini, tetapi bidang tersebut sangat terspesialisasi dan materi pengantarnya sulit diperoleh. Untungnya, Google Cloud menyediakan layanan yang mudah digunakan dalam bidang tersebut, dan melalui kursus tingkat pengantar ini, Anda dapat mengambil langkah pertama dengan alat seperti BigQuery, Cloud Speech API, dan Video Intelligence.
Dalam quest level pendahuluan ini, Anda akan mendapatkan praktik langsung dengan aneka fitur dan layanan dasar Google Cloud Platform. Dasar-Dasar GCP adalah Quest pertama yang direkomendasikan bagi peserta kursus Google Cloud—Anda dapat memulai dengan pengetahuan yang minim atau tanpa pengetahuan sama sekali tentang cloud, dan selesai dengan pengalaman praktis yang dapat diterapkan pada project GCP pertama Anda. Mulai dari menulis perintah Cloud Shell dan menerapkan mesin virtual pertama Anda, hingga menjalankan aplikasi di Kubernetes Engine atau dengan load balancing, Dasar-Dasar GCP merupakan pengenalan terbaik pada fitur-fitur dasar platform cloud. Setiap lab disertai video berdurasi 1 menit yang akan memandu Anda memahami berbagai konsep penting.
This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.