Sany Ahmed
회원 가입일: 2019
실버 리그
6445포인트
회원 가입일: 2019
초급 'Gemini 및 Imagen으로 실제 AI 애플리케이션 빌드하기' 기술 배지 과정을 완료하여, 이미지 인식, 자연어 처리, Google의 강력한 Gemini 및 Imagen 모델을 사용한 이미지 생성, Vertex AI Platform에 애플리케이션 배포 등의 기술을 입증하세요.
이 과정에서는 일부 Google Workspace 사용자에게 제공되는 온라인 동영상 제작 도구이자 편집 앱인 Google Vids에 대해 알아봅니다. 강의와 데모를 통해 동영상으로 강력한 스토리를 만들고 전달하는 방법을 학습합니다. 미디어, 오디오, 동영상 클립을 손쉽게 삽입하고, 스타일을 맞춤설정하며, 완성된 콘텐츠를 쉽게 공유하는 방법도 배웁니다. 일부 Google Vids 기능은 생성형 AI를 사용해 작업 효율성을 높여 줍니다. Gemini를 포함한 생성형 AI 도구는 부정확하거나 부적절한 정보를 제안할 수 있다는 점에 유의하세요. Gemini 기능을 의료, 법률, 금융 또는 기타 전문가의 조언으로 신뢰해서는 안 됩니다. 또한 Gemini 기능의 제안은 Google의 입장을 대변하지 않으며 Google이 작성한 것으로 간주해서는 안 된다는 점에 유의하세요.
이 과정에서는 AI 기반 검색 기술, 도구, 애플리케이션을 살펴봅니다. 벡터 임베딩을 활용하는 시맨틱 검색, 시맨틱 방식과 키워드 방식을 결합한 하이브리드 검색, 그라운딩된 AI 에이전트로서 AI 할루시네이션을 최소화하는 검색 증강 생성(RAG)에 대해 알아보세요. Vertex AI 벡터 검색을 활용해 지능형 검색 엔진을 빌드하는 실무 경험을 쌓을 수 있습니다.
이 과정에서는 Google Cloud의 생성형 AI 기반 파트너인 Gemini가 Google 제품 및 서비스를 사용해 애플리케이션을 개발, 테스트, 배포, 관리하는 데 어떤 도움이 되는지 알아봅니다. Gemini의 도움을 받아 웹 애플리케이션을 개발 및 빌드하고, 애플리케이션의 오류를 수정하고, 테스트를 개발하고, 데이터를 쿼리하는 방법을 배웁니다. 실무형 실습을 통해 Gemini로 소프트웨어 개발 수명 주기(SDLC)가 얼마나 개선되는지 경험할 수 있습니다. Duet AI의 이름이 Google의 차세대 모델인 Gemini로 변경되었습니다.
생성형 AI란 무엇이고 어떻게 사용하며 전통적인 머신러닝 방법과는 어떻게 다른지 설명하는 입문용 마이크로 학습 과정입니다. 직접 생성형 AI 앱을 개발하는 데 도움이 되는 Google 도구에 대해서도 다룹니다.
This quest is designed to teach you how to apply AWS Identity and Access Management, in concert with several other AWS Services, to address real-world application and service security management scenarios.
Serverless architectures allow you to build and run applications and services without needing to provision, manage, and scale infrastructure. This quest will show how to design, build, and deploy interactive serverless web applications, using a simple HTML/JavaScript web interface which uses Amazon API Gateway calls to send requests to AWS Lambda backends that query Amazon DynamoDB data.
In this Quest, you will delve deeper into the uses and capabilities of Amazon Redshift. You will use a remote SQL client to create and configure tables, and gain practice loading large data sets into Redshift. You will explore the effects of schema variations and compression. You will explore visualization of Redshift data, and connect Redshift with Amazon Machine Learning to create a predictive data model.
Achieving AWS Certification requires hands-on experience. This quest helps you get hands-on practice with several key services as you prepare for the AWS Certified Solutions Architect – Professional Exam. Visit AWS Certification to learn more about this exam and find more resources to prepare.
In this Quest, you’ll learn to work with services related to Storage and Content Delivery Networks, including Amazon Simple Storage Service (S3), Amazon Elastic Block Store (EBS), and Amazon CloudFront.
Scientists, developers, and other technologists from many different industries are taking advantage of AWS to perform big data analytics and meet the challenges of the increasing volume, variety, and velocity of digital information. AWS offers a portfolio of cloud computing services to help you manage big data by reducing costs, scaling to meet demand, and increasing the speed of innovation. In this quest, you’ll learn to work with advanced services for Big Data.
Achieving AWS Certification requires hands-on experience. This quest helps you get hands-on practice with several key services as you prepare for the AWS Certified Solutions Architect – Associate Exam. Visit AWS Certification to learn more about this exam and find more resources to prepare.
AWS offers services that provide businesses with a flexible, highly scalable, and low-cost way to deliver their websites and web applications. In this quest, you’ll learn to work with foundational services for marketing websites on AWS.
In this quest, you’ll learn to work with services related to Compute and Networking, including Amazon EC2, Amazon Elastic Load Balancing, and Amazon Virtual Private Cloud (VPC).