Harish Ananda Ramanujam
成为会员时间:2023
成为会员时间:2023
This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.
本课程致力于为您提供所需的知识和工具,让您能够了解 MLOps 团队在部署和管理生成式 AI 模型以及探索 Vertex AI 如何帮助 AI 团队简化 MLOps 流程时面临的独特挑战,并帮助您在生成式 AI 项目中取得成功。
本课程指导学员运用久经考验的设计模式在 Google Cloud 上构建高度可靠且高效的解决方案。它是“Google Compute Engine 架构设计”或“Google Kubernetes Engine 架构设计”课程的延续,并假定您有使用其中任何一门课程所涵盖技术的实践经验。通过一系列演示、设计活动和动手实验,学员可以了解如何定义及平衡业务要求和技术要求,以便设计可靠性和可用性高、安全且经济实惠的 Google Cloud 部署。
This course teaches participants techniques for monitoring and improving infrastructure and application performance in Google Cloud. Using a combination of presentations, demos, hands-on labs, and real-world case studies, attendees gain experience with full-stack monitoring, real-time log management and analysis, debugging code in production, tracing application performance bottlenecks, and profiling CPU and memory usage.
This is the first course of a four-course series for cloud architects and engineers with existing AWS knowledge, and it compares Google Cloud and AWS solutions and guides professionals on their use. This course focuses on Identity and Access Management (IAM) and networking in Google Cloud. The learners apply the knowledge of access management and networking in AWS to explore the similarities and differences with access management and networking in Google Cloud. Learners get hands-on practice building and managing Google Cloud resources.