Rejoindre Se connecter

Mettez en pratique vos compétences dans la console Google Cloud

Harish Ananda Ramanujam

Date d'abonnement : 2023

Machine Learning Operations (MLOps) : premiers pas Earned avr. 16, 2025 EDT
Machine Learning Operations (MLOps) pour l'IA générative Earned avr. 10, 2025 EDT
Infrastructure Google Cloud fiable : conception et processus Earned fév. 18, 2025 EST
Journalisation et surveillance dans Google Cloud Earned fév. 7, 2025 EST
Google Cloud IAM and Networking for AWS Professionals Earned jan. 24, 2025 EST

Ce cours présente les outils et les bonnes pratiques MLOps pour déployer, évaluer, surveiller et exploiter des systèmes de ML en production sur Google Cloud. Le MLOps est une discipline axée sur le déploiement, le test, la surveillance et l'automatisation des systèmes de ML en production. Les ingénieurs en machine learning utilisent des outils pour améliorer et évaluer en permanence les modèles déployés. Ils collaborent avec des data scientists (ou peuvent occuper ce poste) qui développent des modèles permettant de déployer de manière rapide et rigoureuse les solutions de machine learning les plus performantes.

En savoir plus

Dans ce cours, vous allez acquérir les connaissances et les outils nécessaires pour identifier les problématiques uniques auxquelles les équipes MLOps sont confrontées lors du déploiement et de la gestion de modèles d'IA générative. Vous verrez également en quoi Vertex AI permet aux équipes d'IA de simplifier les processus MLOps et de faire aboutir leurs projets d'IA générative.

En savoir plus

Ce cours permet aux participants d'apprendre à créer des solutions hautement fiables et efficaces sur Google Cloud en s'appuyant sur des modèles de conception éprouvés. Il s'inscrit dans la continuité des cours "Concevoir une architecture avec Google Compute Engine" et "Concevoir une architecture avec Google Kubernetes Engine" et demande une expérience pratique des technologies abordées dans chaque cours. À travers un ensemble de présentations, d'activités de conception et d'ateliers pratiques, les participants apprennent à définir des exigences techniques et commerciales, et à trouver un équilibre entre elles pour concevoir des déploiements Google Cloud hautement fiables et disponibles, sécurisés et économes.

En savoir plus

Ce cours présente aux participants des techniques pour surveiller et améliorer les performances de l'infrastructure et des applications dans Google Cloud. À travers un ensemble de présentations, de démonstrations, d'ateliers pratiques et d'études de cas concrets, les participants se familiariseront avec la surveillance full stack, la gestion et l'analyse des journaux en temps réel, le débogage de code en production, le traçage des goulots d'étranglement affectant les performances des applications, et le profilage de l'utilisation du processeur et de la mémoire.

En savoir plus

This is the first course of a four-course series for cloud architects and engineers with existing AWS knowledge, and it compares Google Cloud and AWS solutions and guides professionals on their use. This course focuses on Identity and Access Management (IAM) and networking in Google Cloud. The learners apply the knowledge of access management and networking in AWS to explore the similarities and differences with access management and networking in Google Cloud. Learners get hands-on practice building and managing Google Cloud resources.

En savoir plus