Teilnehmen Anmelden

Ihre Kompetenzen in der Google Cloud Console anwenden

Harish Ananda Ramanujam

Mitglied seit 2023

Machine Learning Operations (MLOps): Getting Started Earned Apr 16, 2025 EDT
Machine Learning Operations (MLOps) für generative KI Earned Apr 10, 2025 EDT
Reliable Google Cloud Infrastructure: Design and Process Earned Feb 18, 2025 EST
Logging and Monitoring in Google Cloud Earned Feb 7, 2025 EST
Google Cloud IAM and Networking for AWS Professionals Earned Jan 24, 2025 EST

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

Weitere Informationen

Dieser Kurs vermittelt Ihnen das Wissen und die nötigen Tools, um die speziellen Herausforderungen zu erkennen, mit denen MLOps-Teams bei der Bereitstellung und Verwaltung von Modellen basierend auf generativer KI konfrontiert sind. Sie erfahren, wie KI-Teams durch Vertex AI dabei unterstützt werden, MLOps-Prozesse zu optimieren und mit Projekten erfolgreich zu sein, in denen generative KI zum Einsatz kommt.

Weitere Informationen

This course equips students to build highly reliable and efficient solutions on Google Cloud using proven design patterns. It is a continuation of the Architecting with Google Compute Engine or Architecting with Google Kubernetes Engine courses and assumes hands-on experience with the technologies covered in either of those courses. Through a combination of presentations, design activities, and hands-on labs, participants learn to define and balance business and technical requirements to design Google Cloud deployments that are highly reliable, highly available, secure, and cost-effective.

Weitere Informationen

This course teaches participants techniques for monitoring and improving infrastructure and application performance in Google Cloud. Using a combination of presentations, demos, hands-on labs, and real-world case studies, attendees gain experience with full-stack monitoring, real-time log management and analysis, debugging code in production, tracing application performance bottlenecks, and profiling CPU and memory usage.

Weitere Informationen

This is the first course of a four-course series for cloud architects and engineers with existing AWS knowledge, and it compares Google Cloud and AWS solutions and guides professionals on their use. This course focuses on Identity and Access Management (IAM) and networking in Google Cloud. The learners apply the knowledge of access management and networking in AWS to explore the similarities and differences with access management and networking in Google Cloud. Learners get hands-on practice building and managing Google Cloud resources.

Weitere Informationen