Dołącz Zaloguj się

Wykorzystuj swoje umiejętności w konsoli Google Cloud

Francesc Ges

Jest członkiem od 2024

Liga diamentowa

28975 pkt.
Work with Gemini Models in BigQuery Earned sty 11, 2025 EST
Boost Productivity with Gemini in BigQuery Earned sty 6, 2025 EST
Tworzenie siatki danych przy użyciu Dataplex Earned sty 6, 2025 EST
Build a Data Warehouse with BigQuery Earned sty 5, 2025 EST
Serverless Data Processing with Dataflow: Operations Earned gru 30, 2024 EST
Serverless Data Processing with Dataflow: Develop Pipelines Earned gru 30, 2024 EST
Serverless Data Processing with Dataflow: Foundations Earned lis 15, 2024 EST
Building Resilient Streaming Analytics Systems on Google Cloud Earned lis 8, 2024 EST
Introduction to Data Engineering on Google Cloud Earned paź 26, 2024 EDT
Building Batch Data Pipelines on Google Cloud Earned paź 13, 2024 EDT
Modernizing Data Lakes and Data Warehouses with Google Cloud Earned wrz 6, 2024 EDT
Preparing for your Professional Data Engineer Journey Earned lip 12, 2024 EDT

This course demonstrates how to use AI/ML models for generative AI tasks in BigQuery. Through a practical use case involving customer relationship management, you learn the workflow of solving a business problem with Gemini models. To facilitate comprehension, the course also provides step-by-step guidance through coding solutions using both SQL queries and Python notebooks.

Więcej informacji

This course explores Gemini in BigQuery, a suite of AI-driven features to assist data-to-AI workflow. These features include data exploration and preparation, code generation and troubleshooting, and workflow discovery and visualization. Through conceptual explanations, a practical use case, and hands-on labs, the course empowers data practitioners to boost their productivity and expedite the development pipeline.

Więcej informacji

Ukończ szkolenie wprowadzające Tworzenie siatki danych przy użyciu Dataplex, aby zdobyć odznakę potwierdzającą zdobycie następujących umiejętności: tworzenie siatki danych przy użyciu Dataplex w celu ułatwienia zarządzania danymi oraz ich wykrywania i ochrony w Google Cloud. Przećwiczysz i sprawdzisz swoje umiejętności w zakresie tagowania zasobów, przypisywania ról uprawnień i oceny jakości danych w Dataplex. Odznaka umiejętności to wyjątkowa cyfrowa odznaka wydawana przez Google Cloud, która potwierdza Twoją wiedzę o produktach i usługach Google Cloud. Aby ją zdobyć, musisz pokazać, że potrafisz zastosować zdobytą wiedzę w praktycznym, interaktywnym środowisku. Ukończ to szkolenie oraz moduł-wyzwanie, aby zdobyć odznakę umiejętności, którą możesz udostępnić w swojej sieci kontaktów.

Więcej informacji

Complete the intermediate Build a Data Warehouse with BigQuery skill badge to demonstrate skills in the following: joining data to create new tables, troubleshooting joins, appending data with unions, creating date-partitioned tables, and working with JSON, arrays, and structs in BigQuery. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge course, and final assessment challenge lab, to receive a digital badge that you can share with your network.

Więcej informacji

In the last installment of the Dataflow course series, we will introduce the components of the Dataflow operational model. We will examine tools and techniques for troubleshooting and optimizing pipeline performance. We will then review testing, deployment, and reliability best practices for Dataflow pipelines. We will conclude with a review of Templates, which makes it easy to scale Dataflow pipelines to organizations with hundreds of users. These lessons will help ensure that your data platform is stable and resilient to unanticipated circumstances.

Więcej informacji

In this second installment of the Dataflow course series, we are going to be diving deeper on developing pipelines using the Beam SDK. We start with a review of Apache Beam concepts. Next, we discuss processing streaming data using windows, watermarks and triggers. We then cover options for sources and sinks in your pipelines, schemas to express your structured data, and how to do stateful transformations using State and Timer APIs. We move onto reviewing best practices that help maximize your pipeline performance. Towards the end of the course, we introduce SQL and Dataframes to represent your business logic in Beam and how to iteratively develop pipelines using Beam notebooks.

Więcej informacji

This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.

Więcej informacji

Processing streaming data is becoming increasingly popular as streaming enables businesses to get real-time metrics on business operations. This course covers how to build streaming data pipelines on Google Cloud. Pub/Sub is described for handling incoming streaming data. The course also covers how to apply aggregations and transformations to streaming data using Dataflow, and how to store processed records to BigQuery or Bigtable for analysis. Learners get hands-on experience building streaming data pipeline components on Google Cloud by using QwikLabs.

Więcej informacji

In this course, you learn about data engineering on Google Cloud, the roles and responsibilities of data engineers, and how those map to offerings provided by Google Cloud. You also learn about ways to address data engineering challenges.

Więcej informacji

Data pipelines typically fall under one of the Extract and Load (EL), Extract, Load and Transform (ELT) or Extract, Transform and Load (ETL) paradigms. This course describes which paradigm should be used and when for batch data. Furthermore, this course covers several technologies on Google Cloud for data transformation including BigQuery, executing Spark on Dataproc, pipeline graphs in Cloud Data Fusion and serverless data processing with Dataflow. Learners get hands-on experience building data pipeline components on Google Cloud using Qwiklabs.

Więcej informacji

The two key components of any data pipeline are data lakes and warehouses. This course highlights use-cases for each type of storage and dives into the available data lake and warehouse solutions on Google Cloud in technical detail. Also, this course describes the role of a data engineer, the benefits of a successful data pipeline to business operations, and examines why data engineering should be done in a cloud environment. This is the first course of the Data Engineering on Google Cloud series. After completing this course, enroll in the Building Batch Data Pipelines on Google Cloud course.

Więcej informacji

This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

Więcej informacji