Francesc Ges
Menjadi anggota sejak 2024
Diamond League
28975 poin
Menjadi anggota sejak 2024
Kursus ini menunjukkan cara menggunakan model AI/ML untuk tugas-tugas AI generatif di BigQuery. Melalui kasus penggunaan praktis yang melibatkan pengelolaan hubungan pelanggan (CRM), Anda akan mempelajari alur kerja pemecahan masalah bisnis dengan model Gemini. Untuk memudahkan pemahaman, kursus ini juga menyediakan panduan langkah demi langkah melalui solusi coding menggunakan kueri SQL dan notebook Python.
Kursus ini mengeksplorasi Gemini in BigQuery, yakni paket fitur yang didukung AI untuk membantu alur kerja data ke AI. Paket fitur ini meliputi eksplorasi dan persiapan data, pembuatan kode dan pemecahan masalah, serta penemuan dan visualisasi alur kerja. Melalui penjelasan konseptual, kasus penggunaan praktis, dan lab interaktif, kursus ini akan membantu para praktisi data dalam meningkatkan produktivitas mereka dan mempercepat pipeline pengembangan.
Selesaikan badge keahlian pengantar Membangun Mesh Data dengan Dataplex untuk menunjukkan keterampilan dalam hal berikut: membuat mesh data dengan Dataplex untuk memfasilitasi keamanan, tata kelola, dan penemuan data di Google Cloud. Anda akan berlatih dan menguji keterampilan Anda dalam memberikan tag pada aset, menetapkan peran IAM, dan menilai kualitas data di Dataplex. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktik yang interaktif. Selesaikan Badge Keahlian ini, dan challenge lab penilaian akhir untuk menerima badge digital yang dapat Anda bagikan ke jaringan Anda.
Selesaikan badge keahlian tingkat menengah Membangun Data Warehouse dengan BigQuery untuk menunjukkan keterampilan Anda dalam hal berikut: menggabungkan data untuk membuat tabel baru, memecahkan masalah penggabungan, menambahkan data dengan union, membuat tabel berpartisi tanggal, serta menggunakan JSON, array, dan struct di BigQuery. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan yang interaktif. Selesaikan kursus badge keahlian ini dan challenge lab penilaian akhir, untuk menerima badge keahlian yang dapat Anda bagikan dengan jaringan Anda.
In the last installment of the Dataflow course series, we will introduce the components of the Dataflow operational model. We will examine tools and techniques for troubleshooting and optimizing pipeline performance. We will then review testing, deployment, and reliability best practices for Dataflow pipelines. We will conclude with a review of Templates, which makes it easy to scale Dataflow pipelines to organizations with hundreds of users. These lessons will help ensure that your data platform is stable and resilient to unanticipated circumstances.
In this second installment of the Dataflow course series, we are going to be diving deeper on developing pipelines using the Beam SDK. We start with a review of Apache Beam concepts. Next, we discuss processing streaming data using windows, watermarks and triggers. We then cover options for sources and sinks in your pipelines, schemas to express your structured data, and how to do stateful transformations using State and Timer APIs. We move onto reviewing best practices that help maximize your pipeline performance. Towards the end of the course, we introduce SQL and Dataframes to represent your business logic in Beam and how to iteratively develop pipelines using Beam notebooks.
This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.
Processing streaming data is becoming increasingly popular as streaming enables businesses to get real-time metrics on business operations. This course covers how to build streaming data pipelines on Google Cloud. Pub/Sub is described for handling incoming streaming data. The course also covers how to apply aggregations and transformations to streaming data using Dataflow, and how to store processed records to BigQuery or Bigtable for analysis. Learners get hands-on experience building streaming data pipeline components on Google Cloud by using QwikLabs.
Dalam kursus ini, Anda akan belajar tentang data engineering on Google Cloud, peran dan tanggung jawab data engineer, dan bagaimana hal tersebut terhubung dengan penawaran yang disediakan oleh Google Cloud. Anda juga akan mempelajari cara untuk mengatasi tantangan terkait data engineering.
Data pipelines typically fall under one of the Extract and Load (EL), Extract, Load and Transform (ELT) or Extract, Transform and Load (ETL) paradigms. This course describes which paradigm should be used and when for batch data. Furthermore, this course covers several technologies on Google Cloud for data transformation including BigQuery, executing Spark on Dataproc, pipeline graphs in Cloud Data Fusion and serverless data processing with Dataflow. Learners get hands-on experience building data pipeline components on Google Cloud using Qwiklabs.
The two key components of any data pipeline are data lakes and warehouses. This course highlights use-cases for each type of storage and dives into the available data lake and warehouse solutions on Google Cloud in technical detail. Also, this course describes the role of a data engineer, the benefits of a successful data pipeline to business operations, and examines why data engineering should be done in a cloud environment. This is the first course of the Data Engineering on Google Cloud series. After completing this course, enroll in the Building Batch Data Pipelines on Google Cloud course.
This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.