加入 登录

在 Google Cloud 控制台中运用您的技能

Anand Rajkumar

成为会员时间:2022

青铜联赛

9160 积分
Generative AI Fundamentals - 繁體中文 Earned Sep 21, 2023 EDT
負責任的 AI 技術簡介 Earned Sep 21, 2023 EDT
大型語言模型簡介 Earned Sep 21, 2023 EDT
生成式 AI 簡介 Earned Sep 21, 2023 EDT
Google Cloud 的 AI 和機器學習服務簡介 Earned Sep 21, 2023 EDT
透過 Vertex AI 建構及部署機器學習解決方案 Earned Sep 14, 2023 EDT
Machine Learning Operations (MLOps) with Vertex AI: Manage Features Earned Sep 6, 2023 EDT
ML Pipelines on Google Cloud Earned Sep 3, 2023 EDT
Machine Learning Operations (MLOps): Getting Started Earned Aug 2, 2023 EDT
Recommendation Systems on Google Cloud Earned Jul 29, 2023 EDT
Production Machine Learning Systems Earned Jul 22, 2023 EDT
Computer Vision Fundamentals with Google Cloud Earned Jul 17, 2023 EDT
Machine Learning in the Enterprise Earned Jul 9, 2023 EDT
Feature Engineering Earned Jul 6, 2023 EDT
Build, Train and Deploy ML Models with Keras on Google Cloud Earned Jul 2, 2023 EDT
Natural Language Processing on Google Cloud Earned Jun 25, 2023 EDT
在 Google Cloud 為機器學習 API 準備資料 Earned Jun 22, 2023 EDT
Launching into Machine Learning Earned Jun 20, 2023 EDT
How Google Does Machine Learning Earned Jun 11, 2023 EDT
Automate Interactions with Contact Center AI Earned Jun 9, 2023 EDT
Google Cloud Big Data and Machine Learning Fundamentals Earned Jun 2, 2023 EDT
Use Machine Learning APIs on Google Cloud Earned May 22, 2023 EDT
在 Google Cloud 設定應用程式開發環境 Earned Nov 20, 2022 EST
Google Cloud Essentials Earned Nov 17, 2022 EST
設定 Google Cloud 網路 Earned Nov 15, 2022 EST
從 BigQuery 資料取得深入分析結果 Earned Nov 7, 2022 EST

完成「Introduction to Generative AI」、「Introduction to Large Language Models」和「Introduction to Responsible AI」課程,即可獲得技能徽章。通過最終測驗,就能展現您對生成式 AI 基本概念的掌握程度。 「技能徽章」是 Google Cloud 核發的數位徽章,用於表彰您對 Google Cloud 產品和服務的相關知識。您可以將技能徽章公布在社群媒體的個人資料中,向其他人分享您的成果。

了解详情

這個入門微學習課程主要介紹「負責任的 AI 技術」和其重要性,以及 Google 如何在自家產品中導入這項技術。本課程也會說明 Google 的 7 個 AI 開發原則。

了解详情

這是一堂入門級的微學習課程,旨在探討大型語言模型 (LLM) 的定義和用途,並說明如何調整提示來提高 LLM 成效。此外,也會介紹多項 Google 工具,協助您自行開發生成式 AI 應用程式。

了解详情

這個入門微學習課程主要說明生成式 AI 的定義和使用方式,以及此 AI 與傳統機器學習方法的差異。本課程也會介紹各項 Google 工具,協助您開發自己的生成式 AI 應用程式。

了解详情

本課程介紹 Google Cloud 中的 AI 和機器學習 (ML) 服務。這些服務可建構預測式和生成式 AI 專案。我們將帶您探索「從資料到 AI」生命週期中適用的技術、產品和工具,包括 AI 基礎、開發選項及解決方案。課程目的是藉由生動的學習體驗與實作練習,增進數據資料學家、AI 開發人員和機器學習工程師的技能與知識。

了解详情

完成 透過 Vertex AI 建構及部署機器學習解決方案 課程,即可瞭解如何使用 Google Cloud 的 Vertex AI 平台、AutoML 和自訂訓練服務, 訓練、評估、調整、解釋及部署機器學習模型。 這個技能徽章課程適合專業數據資料學家和機器學習 工程師,完成即可取得中階技能徽章。技能 徽章是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品和服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境應用相關知識。完成這個技能徽章課程 和結業評量挑戰實驗室,就能獲得數位徽章, 並與親友分享。

了解详情

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Learners will get hands-on practice using Vertex AI Feature Store's streaming ingestion at the SDK layer.

了解详情

In this course, you will be learning from ML Engineers and Trainers who work with the state-of-the-art development of ML pipelines here at Google Cloud. The first few modules will cover about TensorFlow Extended (or TFX), which is Google’s production machine learning platform based on TensorFlow for management of ML pipelines and metadata. You will learn about pipeline components and pipeline orchestration with TFX. You will also learn how you can automate your pipeline through continuous integration and continuous deployment, and how to manage ML metadata. Then we will change focus to discuss how we can automate and reuse ML pipelines across multiple ML frameworks such as tensorflow, pytorch, scikit learn, and xgboost. You will also learn how to use another tool on Google Cloud, Cloud Composer, to orchestrate your continuous training pipelines. And finally, we will go over how to use MLflow for managing the complete machine learning life cycle.

了解详情

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

了解详情

In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.

了解详情

This course covers how to implement the various flavors of production ML systems— static, dynamic, and continuous training; static and dynamic inference; and batch and online processing. You delve into TensorFlow abstraction levels, the various options for doing distributed training, and how to write distributed training models with custom estimators. This is the second course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Image Understanding with TensorFlow on Google Cloud course.

了解详情

This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.

了解详情

This course takes a real-world approach to the ML Workflow through a case study. An ML team faces several ML business requirements and use cases. The team must understand the tools required for data management and governance and consider the best approach for data preprocessing. The team is presented with three options to build ML models for two use cases. The course explains why they would use AutoML, BigQuery ML, or custom training to achieve their objectives.

了解详情

This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.

了解详情

This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.

了解详情

This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.

了解详情

完成 在 Google Cloud 為機器學習 API 準備資料 技能徽章入門課程,即可證明您具備下列技能: 使用 Dataprep by Trifacta 清理資料、在 Dataflow 執行資料管道、在 Dataproc 建立叢集和執行 Apache Spark 工作,以及呼叫機器學習 API,包含 Cloud Natural Language API、Google Cloud Speech-to-Text API 和 Video Intelligence API。 「技能徽章」是 Google Cloud 核發的獨家數位徽章,用於肯定您在 Google Cloud 產品與服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境中應用相關知識。完成本技能徽章課程及結業評量挑戰研究室, 即可取得技能徽章並與他人分享。

了解详情

The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.

了解详情

This course explores what ML is and what problems it can solve. The course also discusses best practices for implementing machine learning. You’re introduced to Vertex AI, a unified platform to quickly build, train, and deploy AutoML machine learning models. The course discusses the five phases of converting a candidate use case to be driven by machine learning, and why it’s important to not skip them. The course ends with recognizing the biases that ML can amplify and how to recognize them.

了解详情

Earn a skill badge by completing the Automate Interactions with Contact Center AI quest, where you will learn about the features of Contact Center AI, including how to Build a virtual agent, Design conversation flows for your virtual agent; Add a phone gateway to your virtual agent; Use Dialogflow for troubleshooting; Review logs and debug your virtual agent. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge quest, and final assessment challenge lab, to receive a digital badge that you can share with your network.

了解详情

This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.

了解详情

Earn the advanced skill badge by completing the Use Machine Learning APIs on Google Cloud course, where you learn the basic features for the following machine learning and AI technologies: Cloud Vision API, Cloud Translation API, and Cloud Natural Language API.

了解详情

只要修完「在 Google Cloud 設定應用程式開發環境」課程,就能獲得技能徽章。 在本課程中,您將學會如何使用以下技術的基本功能,建構和連結以儲存空間為中心的雲端基礎架構:Cloud Storage、Identity and Access Management、Cloud Functions 和 Pub/Sub。 「技能徽章」是 Google Cloud 核發的獨家數位徽章,用於表彰您相當熟悉 Google Cloud 產品與服務,並已通過測驗,能在互動式實作環境中應用相關知識。只要完成這個技能徽章課程和最終評量挑戰研究室,即可取得技能徽章並與親友分享成就。

了解详情

In this introductory-level course, you get hands-on practice with the Google Cloud’s fundamental tools and services. Optional videos are provided to provide more context and review for the concepts covered in the labs. Google Cloud Essentials is a recommendeded first course for the Google Cloud learner - you can come in with little or no prior cloud knowledge, and come out with practical experience that you can apply to your first Google Cloud project. From writing Cloud Shell commands and deploying your first virtual machine, to running applications on Kubernetes Engine or with load balancing, Google Cloud Essentials is a prime introduction to the platform’s basic features.

了解详情

完成「設定 Google Cloud 網路」課程,即可獲得技能徽章。 您將瞭解如何在 Google Cloud Platform 執行基本的網路工作,包括建立自訂網路、新增子網路防火牆規則,還有建立 VM 並測試 VM 之間的通訊延遲。 「技能徽章」是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品與服務方面的精熟技能, 並代表您已通過測驗, 能在互動式實作環境中應用相關知識。完成這個課程及結業評量挑戰實驗室, 即可取得數位徽章並與他人分享。

了解详情

完成 從 BigQuery 資料取得深入分析結果 技能徽章入門課程,即可證明您具備下列技能: 撰寫 SQL 查詢、查詢公開資料表、將樣本資料載入 BigQuery、使用 BigQuery 的查詢驗證工具 排解常見語法錯誤,以及在 Looker Studio 中 透過連結 BigQuery 資料建立報表。 「技能徽章」是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品和服務方面的精通程度,代表您已通過測驗,能在互動式實作環境中應用相關 知識。完成本技能徽章課程及結業評量挑戰 實驗室,即可取得技能徽章並與他人分享。

了解详情