En este curso, se presentan los conceptos de interpretabilidad y transparencia de la IA, así como se menciona la importancia de la transparencia de la IA para los ingenieros y desarrolladores. Se exploran métodos y herramientas funcionales para ayudar a lograr la interpretabilidad y transparencia en los modelos de IA y datos.
En este curso, se presentan los conceptos de la IA responsable y los principios de la IA. Se abordan técnicas para identificar de forma práctica la equidad y los sesgos, y mitigar los sesgos en las prácticas de IA/AA. Se exploran métodos y herramientas funcionales para implementar prácticas recomendadas de la IA responsable con productos de Google Cloud y herramientas de código abierto.
En este curso, los profesionales del aprendizaje automático aprenderán a utilizar las herramientas, las técnicas y las prácticas recomendadas indispensables para evaluar los modelos de IA generativa y predictiva. La evaluación de modelos es una disciplina esencial para garantizar que los sistemas de AA arrojen resultados confiables, exactos y de alto rendimiento en la producción. Los participantes obtendrán información exhaustiva sobre diversas métricas y metodologías de evaluación, además de su aplicación adecuada en diferentes tipos de modelos y tareas. En este curso, se hará énfasis en los desafíos únicos que presentan los modelos de IA generativa y se ofrecerán estrategias para abordarlos de manera eficaz. Con la plataforma de Vertex AI de Google Cloud, los participantes aprenderán a implementar los procesos sólidos de evaluación para la selección, optimización y supervisión continua de modelos.
El objetivo de este curso es equiparte con los conocimientos y las herramientas que necesitas para descubrir los desafíos únicos que enfrentan los equipos de MLOps cuando implementan y administran modelos de IA generativa, y explorar cómo Vertex AI fortalece a los equipos de IA para optimizar los procesos de MLOps y alcanzar el éxito en los proyectos de IA generativa.
En este curso, se presentan las ofertas de aprendizaje automático (AA) en Google Cloud que compilan proyectos de IA predictiva y generativa. También se exploran las tecnologías, los productos y las herramientas disponibles durante el ciclo de vida desde los datos hasta la IA, que engloban los fundamentos, el desarrollo y las soluciones de IA. El objetivo es ayudar a científicos de datos, ingenieros de AA y desarrolladores de IA a mejorar sus habilidades y conocimientos a través de experiencias de aprendizaje atractivas y ejercicios prácticos.