参加 ログイン

Google Cloud コンソールでスキルを試す

Jaafar Youssef

メンバー加入日: 2020

ブロンズリーグ

400 ポイント
Vertex AI Studio の概要 Earned 7月 17, 2023 EDT
画像キャプション モデルの作成 Earned 7月 17, 2023 EDT
Transformer モデルと BERT モデル Earned 7月 17, 2023 EDT
アテンション機構 Earned 7月 17, 2023 EDT
Encoder-Decoder アーキテクチャ Earned 7月 17, 2023 EDT
画像生成の概要 Earned 7月 17, 2023 EDT
Generative AI Fundamentals - 日本語版 Earned 7月 17, 2023 EDT
責任ある AI の概要 Earned 7月 1, 2023 EDT
大規模言語モデルの概要 Earned 6月 26, 2023 EDT
生成 AI の概要 Earned 6月 21, 2023 EDT
ML 入門: 言語処理 Earned 10月 20, 2020 EDT
Data Science on the Google Cloud Platform Earned 9月 29, 2020 EDT
ベースライン: データ、ML、AI Earned 9月 29, 2020 EDT
[DEPRECATED] Data Engineering Earned 9月 28, 2020 EDT
Scientific Data Processing Earned 9月 28, 2020 EDT
DEPRECATED BigQuery for Data Analysis Earned 9月 28, 2020 EDT

このコースでは、生成 AI モデルとのやりとり、ビジネス アイデアのプロトタイプ作成、本番環境へのリリースを行うツールである Vertex AI Studio をご紹介します。現実感のあるユースケースや、興味深い講義、ハンズオンラボを通して、プロンプトの作成から成果の実現に至るまでのライフサイクルを詳細に学び、Gemini マルチモーダル アプリケーションの開発、プロンプトの設計、モデルのチューニングに Vertex AI を活用する方法を学習します。Vertex AI Studio を利用することで、生成 AI をプロジェクトに最大限に活かせるようになることを目指します。

詳細

このコースでは、ディープ ラーニングを使用して画像キャプション生成モデルを作成する方法について学習します。エンコーダやデコーダなどの画像キャプション生成モデルのさまざまなコンポーネントと、モデルをトレーニングして評価する方法を学びます。このコースを修了すると、独自の画像キャプション生成モデルを作成し、それを使用して画像のキャプションを生成できるようになります。

詳細

このコースでは、Transformer アーキテクチャと Bidirectional Encoder Representations from Transformers(BERT)モデルの概要について説明します。セルフアテンション機構をはじめとする Transformer アーキテクチャの主要コンポーネントと、それが BERT モデルの構築にどのように使用されているのかについて学習します。さらに、テキスト分類、質問応答、自然言語推論など、BERT を適用可能なその他のタスクについても学習します。このコースの推定所要時間は約 45 分です。

詳細

このコースでは、アテンション機構について学習します。アテンション機構とは、ニューラル ネットワークに入力配列の重要な部分を認識させるための高度な技術です。アテンションの仕組みと、アテンションを活用して機械翻訳、テキスト要約、質問応答といったさまざまな ML タスクのパフォーマンスを改善する方法を説明します。

詳細

このコースでは、機械翻訳、テキスト要約、質問応答などのシーケンス ツー シーケンス タスクに対応する、強力かつ広く使用されている ML アーキテクチャである Encoder-Decoder アーキテクチャの概要を説明します。Encoder-Decoder アーキテクチャの主要なコンポーネントと、これらのモデルをトレーニングして提供する方法について学習します。対応するラボのチュートリアルでは、詩を生成するための Encoder-Decoder アーキテクチャの簡単な実装を、TensorFlow で最初からコーディングします。

詳細

このコースでは拡散モデルについて説明します。拡散モデルは ML モデル ファミリーの一つで、最近、画像生成分野での有望性が示されました。拡散モデルは物理学、特に熱力学からインスピレーションを得ています。ここ数年、拡散モデルは研究と産業界の両方で広まりました。拡散モデルは、Google Cloud の最先端の画像生成モデルやツールの多くを支える技術です。このコースでは、拡散モデルの背景にある理論と、モデルを Vertex AI でトレーニングしてデプロイする方法について説明します。

詳細

「Introduction to Generative AI」、「Introduction to Large Language Models」、「Introduction to Responsible AI」の各コースを修了すると、スキルバッジを獲得できます。最終テストに合格することで、ジェネレーティブ AI の基礎概念を理解していることが証明されます。 スキルバッジは、Google Cloud のプロダクトとサービスに関する知識を認定するために Google Cloud が発行するデジタルバッジです。スキルバッジは、ソーシャル メディアの公開プロフィールを作成してそこに追加することで一般向けに共有できます。

詳細

この入門レベルのマイクロラーニング コースでは、責任ある AI の概要と重要性、および Google が責任ある AI を自社プロダクトにどのように実装しているのかについて説明します。また、Google の AI に関する 7 つの原則についても説明します。

詳細

このコースは、大規模言語モデル(LLM)とは何か、どのようなユースケースで活用できるのか、プロンプトのチューニングで LLM のパフォーマンスを高めるにはどうすればよいかについて学習する、入門レベルのマイクロ ラーニング コースです。独自の生成 AI アプリを開発する際に利用できる Google ツールも紹介します。

詳細

この入門レベルのマイクロラーニング コースでは、生成 AI の概要、利用方法、従来の機械学習の手法との違いについて説明します。独自の生成 AI アプリを作成する際に利用できる Google ツールも紹介します。

詳細

ML は、IT 分野で最も急速に成長している技術の一つであり、Google Cloud Platform はその発展に大きく貢献してきました。 Google Cloud では多数の API により、ほぼすべての ML ジョブに対応するツールを提供しています。 この入門コースでは、ラボを通じて言語処理に活用できる ML の実践演習を行います。 これにより、テキストからのエンティティの抽出、 感情分析と構文解析、音声文字変換のための Speech-to-Text API の使用方法を学ぶことができます。

詳細

これは 2 つのクエストから構成されるハンズオンラボの 1 つ目のクエストで、『Data Science on Google Cloud Platform』(著者: Valliappa Lakshmanan、出版元: O'Reilly Media, Inc.)という書籍から抜粋した演習をもとに作成されたものです。1 つ目のクエストでは第 8 章までを扱い、Google Cloud Platform のツールとサービスを使用して、データセットの取り込み、準備、処理、クエリ、探索、可視化に関するあらゆる面について学習することができます。

詳細

ビッグデータ、ML、AI は今日のコンピュータ業界ではホットなトピックですが、 これらの分野は非常に専門性が高く、 入門レベルの教材を見つけるのは困難です。幸いなことに、Google Cloud はこうした分野でユーザー フレンドリーなサービスを提供しており、 この入門レベルのコースを通じて、BigQuery、Cloud Speech API、 Video Intelligence などのツールを使い始めるための第一歩を踏み出せます。

詳細

This advanced-level quest is unique amongst the other catalog offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Data Engineer Certification. From Big Query, to Dataprep, to Cloud Composer, this quest is composed of specific labs that will put your Google Cloud data engineering knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, you will need other preparation, too. The exam is quite challenging and external studying, experience, and/or background in cloud data engineering is recommended. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of the Engineer Data in the Google Cloud to receive an exclusive Google Cloud digital badge.

詳細

ビッグデータ、機械学習、科学的データ。完璧な組み合わせといえます。このクエストは上級レベルであり、実際の科学的データセットを使用するユースケースに BigQuery、Dataproc、Tensorflow などの GCP サービスを当てはめ、実践的な演習を行います。「科学的データ処理」では、地震データの分析や衛星画像の集約といったタスクを実践し、ビッグデータと機械学習に関するスキルの強化を図ります。これにより、多岐にわたる科学的分野でさまざまな問題に取り組むことができるようになります。

詳細

Want to learn the core SQL and visualization skills of a Data Analyst? Interested in how to write queries that scale to petabyte-size datasets? Take the BigQuery for Analyst Quest and learn how to query, ingest, optimize, visualize, and even build machine learning models in SQL inside of BigQuery.

詳細