Este curso ayuda a los participantes a crear un plan de estudio para el examen de certificación de PDE (Professional Data Engineer). Los alumnos conocerán la amplitud y el alcance de los dominios que se incluyen en el examen. Además, evaluarán su nivel de preparación para el examen y crearán un plan de estudio personal.
Este curso corresponde a la 1ª parte de una serie de 3 cursos llamada Procesamiento de datos sin servidores con Dataflow. Para comenzar, en el primer curso haremos un repaso de qué es Apache Beam y cómo se relaciona con Dataflow. Luego, hablaremos sobre la visión de Apache Beam y los beneficios que ofrece su framework de portabilidad. Dicho framework hace posible que un desarrollador pueda usar su lenguaje de programación favorito con su backend de ejecución preferido. Después, le mostraremos cómo Dataflow le permite separar el procesamiento y el almacenamiento y, a la vez, ahorrar dinero. También le explicaremos cómo las herramientas de identidad, acceso y administración interactúan con sus canalizaciones de Dataflow. Por último, veremos cómo implementar el modelo de seguridad adecuado en Dataflow según su caso de uso.
La incorporación del aprendizaje automático en las canalizaciones de datos aumenta la capacidad para extraer estadísticas de los datos. En este curso, veremos formas de incluir el aprendizaje automático en las canalizaciones de datos en Google Cloud. Para una personalización escasa o nula, en el curso se aborda AutoML. Para obtener más capacidades de aprendizaje automático a medida, el curso presenta Notebooks y BigQuery Machine Learning (BigQuery ML). Además, en este curso se aborda cómo llevar a producción soluciones de aprendizaje automático con Vertex AI.
El procesamiento de datos de transmisión es cada vez más popular, puesto que permite a las empresas obtener métricas en tiempo real sobre las operaciones comerciales. Este curso aborda cómo crear canalizaciones de datos de transmisión en Google Cloud. Pub/Sub se describe para manejar los datos de transmisión entrantes. El curso también aborda cómo aplicar agregaciones y transformaciones a los datos de transmisión con Dataflow y cómo almacenar los registros procesados en BigQuery o Bigtable para analizarlos. Los estudiantes obtienen experiencia práctica en la compilación de componentes de canalizaciones de datos de transmisión en Google Cloud con QwikLabs.
Las canalizaciones de datos suelen realizarse según uno de los paradigmas extracción y carga (EL); extracción, carga y transformación (ELT), o extracción, transformación y carga (ETL). En este curso, abordaremos qué paradigma se debe utilizar para los datos por lotes y cuándo corresponde usarlo. Además, veremos varias tecnologías de Google Cloud para la transformación de datos, incluidos BigQuery, la ejecución de Spark en Dataproc, grafos de canalización en Cloud Data Fusion y procesamiento de datos sin servidores en Dataflow. Los estudiantes obtienen experiencia práctica en la compilación de componentes de canalizaciones de datos en Google Cloud con Qwiklabs.
Los dos componentes clave de cualquier canalización de datos son los data lakes y los almacenes de datos. En este curso, se destacan los casos de uso de cada tipo de almacenamiento y se analizan en profundidad las soluciones de data lakes y almacenes disponibles en Google Cloud con detalles técnicos. Además, en este curso, se describen el rol del ingeniero en datos, los beneficios de las canalizaciones de datos exitosas para las operaciones comerciales y por qué la ingeniería de datos debe realizarse en un entorno de nube. Este el primer curso de la serie Ingeniería de datos en Google Cloud. Después de completar este curso, inscríbete en el curso Creación de flujos de procesamiento de datos por lotes en Google Cloud.
Data Catalog es un servicio de administración de metadatos completamente administrado y escalable que permite a las organizaciones descubrir, comprender y administrar todos sus datos con rapidez.En esta Quest, comenzará por aprender actividades básicas como buscar y etiquetar recursos de datos y metadatos con Data Catalog. Una vez que aprenda a crear sus propias plantillas de etiquetado que se mapeen a datos de tablas de BigQuery, descubrirá cómo incorporar MySQL, PostgreSQL y SQL Server a conectores de Data Catalog.
In this course, you will get hands-on experience applying advanced LookML concepts in Looker. You will learn how to use Liquid to customize and create dynamic dimensions and measures, create dynamic SQL derived tables and customized native derived tables, and use extends to modularize your LookML code.
This course empowers you to develop scalable, performant LookML (Looker Modeling Language) models that provide your business users with the standardized, ready-to-use data that they need to answer their questions. Upon completing this course, you will be able to start building and maintaining LookML models to curate and manage data in your organization’s Looker instance.
In this course, you learn how to do the kind of data exploration and analysis in Looker that would formerly be done primarily by SQL developers or analysts. Upon completion of this course, you will be able to leverage Looker's modern analytics platform to find and explore relevant content in your organization’s Looker instance, ask questions of your data, create new metrics as needed, and build and share visualizations and dashboards to facilitate data-driven decision making.
En este curso, definimos qué es el aprendizaje automático y cómo puede beneficiar a tu negocio. Verás algunas demostraciones de AA en acción y aprenderás términos clave de AA, como instancias, atributos y etiquetas. En los labs interactivos, practicarás la invocación de las APIs de AA previamente entrenadas que están disponibles y crearás tus propios modelos de aprendizaje automático con solo SQL y BigQuery ML.
El tercer curso de esta serie es Achieving Advanced Insights with BigQuery. En este curso, aumentarás tu conocimiento de SQL a medida que profundizamos en funciones avanzadas y cómo desglosar una consulta compleja en pasos más sencillos. Abordaremos la arquitectura interna de BigQuery (almacenamiento fragmentado basado en columnas) y temas avanzados de SQL, como los campos anidados y repetidos a través del uso de arrays y structs. Finalmente, profundizaremos en la optimización de tus consultas para mejorar el rendimiento y cómo puedes proteger tus datos con vistas autorizadas. Después de completar este curso, inscríbete en el curso Applying Machine Learning to your Data with Google Cloud.
Este es el segundo curso de la serie de cursos Data to Insights. Aquí, veremos cómo transferir nuevos conjuntos de datos externos a BigQuery y visualizarlos con Looker Studio. También analizaremos los conceptos intermedios de SQL, como las operaciones JOIN y UNION de varias tablas, que te permitirán analizar datos de varias fuentes. Nota: Incluso si tienes experiencia en SQL, hay aspectos específicos de BigQuery (como la gestión del almacenamiento en caché de las consultas y los comodines de tablas) que pueden ser nuevos para ti. Después de completar el curso, inscríbete en el curso Achieving Advanced Insights with BigQuery.
En este curso, veremos cuáles son los desafíos comunes a los que se enfrentan los analistas de datos y cómo resolverlos con las herramientas de macrodatos en Google Cloud. Aprenderás algunos conceptos de SQL y adquirirás conocimientos sobre el uso de BigQuery y Dataprep para analizar y transformar conjuntos de datos. Este es el primer curso de la serie From Data to Insights with Google Cloud. Después de completarlo, inscríbete en el curso Creating New BigQuery Datasets and Visualizing Insights.
En este curso, aprenderás sobre los productos y servicios de macrodatos y aprendizaje automático de Google Cloud involucrados en el ciclo de vida de datos a IA. También explorarás los procesos, los desafíos y los beneficios de crear una canalización de macrodatos y modelos de aprendizaje automático con Vertex AI en Google Cloud.
Organizaciones de todos los tamaños están aprovechando la potencia y flexibilidad de la nube para transformar sus operaciones. Sin embargo, administrar y escalar eficazmente los recursos en la nube puede ser una tarea compleja. En Escala con Google Cloud Operations, se exploran los conceptos fundamentales de las operaciones modernas, la confiabilidad y la resiliencia en la nube, y cómo Google Cloud puede ayudar con esas tareas. Como parte de la ruta de aprendizaje de Líder digital de Cloud, el objetivo de este curso es ayudar a las personas a crecer en su rol y desarrollar el futuro de su empresa.
Muchas empresas tradicionales usan aplicaciones y sistemas heredados que no pueden adecuarse a las expectativas de los clientes actuales. A menudo los líderes empresariales deben elegir entre mantener sus sistemas de TI anticuados o invertir en nuevos productos y servicios. En “Moderniza infraestructura y aplicaciones con Google Cloud”, se exploran estos desafíos y se ofrecen soluciones para superarlos con la tecnología de la nube. Como parte de la ruta de aprendizaje de Líder digital de Cloud, el objetivo de este curso es ayudar a las personas a crecer en su rol y desarrollar el futuro de su empresa.
La tecnología de Cloud puede aportar un gran valor a una organización y, si la combinamos con datos, podemos generar aún más valor y crear nuevas experiencias para los clientes.En “Explora la transformación de datos con Google Cloud”, se explora el valor que los datos pueden aportar a una organización y las formas en que Google Cloud puede hacer que estos sean útiles y accesibles.Como parte de la ruta de aprendizaje de Líder digital de Cloud, el objetivo de este curso es ayudar a las personas a crecer en su rol y desarrollar el futuro de su empresa.
Existe mucho entusiasmo sobre la tecnología de la nube y la transformación digital, pero también muchas preguntas sin respuesta. Por ejemplo: ¿Qué es la tecnología de la nube? ¿Qué significa transformación digital? ¿De qué manera puede ser útil la tecnología de la nube para la organización? ¿Cómo se puede comenzar? Si te has hecho alguna de esas preguntas, estás en el lugar indicado. En este curso, se proporciona una descripción general de los tipos de oportunidades y desafíos a los que las empresas suelen enfrentarse en su recorrido de transformación digital. Si quieres aprender sobre la tecnología de la nube para sobresalir en tu rol y ayudar a desarrollar el futuro de tu empresa, entonces este curso introductorio sobre transformación digital es para ti. Este curso es parte de la ruta de aprendizaje de Líder digital de Cloud.