Unirse Acceder

Aplica tus habilidades en la consola de Google Cloud

Alexandre MORITZ

Miembro desde 2018

Liga de Plata

1490 puntos
Recommendation Systems on Google Cloud Earned ago 17, 2023 EDT
Crea e implementa soluciones de aprendizaje automático en Vertex AI Earned ago 17, 2023 EDT
Computer Vision Fundamentals with Google Cloud Earned ago 17, 2023 EDT
Natural Language Processing on Google Cloud Earned ago 17, 2023 EDT
Sistemas de aprendizaje automático de producción Earned ago 16, 2023 EDT
Ingeniería de atributos Earned ago 15, 2023 EDT
Operaciones de aprendizaje automático (MLOps): Primeros pasos Earned ago 15, 2023 EDT
Aprendizaje automático en empresas Earned ago 13, 2023 EDT
Crea, entrena e implementa modelos de AA con Keras en Google Cloud Earned abr 24, 2023 EDT
Launching into Machine Learning - Español Earned abr 24, 2023 EDT
How Google Does Machine Learning - Español Earned abr 17, 2023 EDT
Smart Analytics, Machine Learning, and AI on Google Cloud - Español Earned nov 26, 2022 EST
Google Cloud Big Data and Machine Learning Fundamentals - Español Earned nov 20, 2022 EST
Preparación para el proceso de certificación Professional Data Engineer Earned nov 20, 2022 EST
Vertex AI Earned oct 20, 2022 EDT
DEPRECATED Explore Machine Learning Models with Explainable AI Earned mar 19, 2021 EDT
Advanced ML: ML Infrastructure Earned ene 29, 2020 EST
Cloud Development Earned oct 6, 2019 EDT
DEPRECATED Google Cloud Solutions II: Data and Machine Learning Earned ene 13, 2019 EST
Scientific Data Processing Earned ene 5, 2019 EST
Data Science on the Google Cloud Platform Earned dic 19, 2018 EST
API de aprendizaje automático Earned dic 14, 2018 EST
Modelo de referencia: datos, AA, IA Earned dic 12, 2018 EST
[DEPRECATED] Data Engineering Earned dic 11, 2018 EST
Google Cloud Essentials Earned nov 24, 2018 EST

In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.

Más información

Obtén la insignia de habilidad intermedia completando el curso Crea e implementa soluciones de aprendizaje automático en Vertex AI, en el que aprenderás a usar la plataforma de Vertex AI de Google Cloud, así como AutoML y los servicios de entrenamiento personalizado para entrenar, evaluar, ajustar y, además, implementar modelos de aprendizaje automático. Este curso con insignia de habilidad está dirigido a ingenieros de aprendizaje automático y científicos de datos profesionales. Una insignia de habilidad es una insignia digital exclusiva otorgada por Google Cloud en reconocimiento de tu dominio de los productos y servicios de la plataforma, y que prueba tu capacidad para aplicar tus conocimientos en un entorno interactivo y práctico. Completa esta insignia de habilidad y el Lab de desafío de la evaluación final para recibir una insignia digital que puedes compartir en tus redes.

Más información

This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.

Más información

This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.

Más información

En este curso, analizaremos los componentes y las prácticas recomendadas de la creación de sistemas de AA de alto rendimiento en entornos de producción. Veremos algunas de las consideraciones más comunes tras la creación de estos sistemas, p. ej., entrenamiento estático, entrenamiento dinámico, inferencia estática, inferencia dinámica, TensorFlow distribuido y TPU. Este curso se enfoca en explorar las características que conforman un buen sistema de AA más allá de su capacidad de realizar predicciones correctas.

Más información

En este curso, se exploran los beneficios de utilizar Vertex AI Feature Store, cómo mejorar la exactitud de los modelos de AA y cómo descubrir cuáles columnas de datos producen los atributos más útiles. El curso también incluye contenido y labs sobre la ingeniería de atributos en los que se usan BigQuery ML, Keras y TensorFlow.

Más información

En este curso, se presentan a los participantes las herramientas y prácticas recomendadas de MLOps para implementar, evaluar, supervisar y operar sistemas de AA de producción en Google Cloud. Las MLOps son una disciplina enfocada en la implementación, prueba, supervisión y automatización de sistemas de AA en producción. Los ingenieros profesionales de aprendizaje automático usan herramientas para mejorar y evaluar continuamente los modelos implementados. Trabajan con científicos de datos (o pueden serlo) que desarrollan modelos para ofrecer velocidad y rigor en la implementación de modelos con el mejor rendimiento.

Más información

En este curso, se aplica un enfoque real en el flujo de trabajo del AA a través de un caso de éxito. Un equipo de AA trabaja con varios requisitos empresariales y casos de uso de AA. El equipo debe comprender las herramientas necesarias para la administración de los datos y considerar el mejor enfoque para su procesamiento previo. Al equipo se le presentan tres opciones con las que puede crear modelos de AA para dos casos de uso. En el curso, se explica por qué el equipo usará AutoML, BigQuery ML o entrenamiento personalizado para lograr sus objetivos.

Más información

En este curso, se explica cómo crear modelos de AA con TensorFlow y Keras, cómo mejorar la exactitud de los modelos de AA y cómo escribir modelos de AA para uso escalado.

Más información

El curso comienza con un debate sobre los datos: cómo mejorar su calidad y cómo realizar análisis exploratorios de ellos. Describimos Vertex AI AutoML y cómo crear, entrenar e implementar un modelo de AA sin escribir una sola línea de código. Conocerás los beneficios de BigQuery ML. Luego, se analiza cómo optimizar un modelo de aprendizaje automático (AA) y cómo la generalización y el muestreo pueden ayudar a evaluar la calidad de los modelos de AA para el entrenamiento personalizado.

Más información

¿Cuáles son las prácticas recomendadas para implementar el aprendizaje automático en Google Cloud? ¿Qué es Vertex AI y cómo se puede utilizar la plataforma para crear, entrenar e implementar rápidamente modelos de aprendizaje automático de AutoML sin escribir una sola línea de código? ¿Qué es el aprendizaje automático? ¿Qué tipos de problemas puede solucionar? Google considera que el aprendizaje automático es diferente: se trata de proporcionar una plataforma unificada para conjuntos de datos administrados, un almacén de atributos, una forma de crear, entrenar e implementar modelos de aprendizaje automático sin escribir una sola línea de código, así como proporcionar la capacidad de etiquetar datos y crear notebooks de Workbench utilizando frameworks como TensorFlow, SciKit-learn, Pytorch, R y otros. Vertex AI Platform también ofrece la posibilidad de entrenar modelos personalizados, crear canalizaciones de componentes y realizar predicciones en línea y por lotes. Además, analiza…

Más información

La incorporación del aprendizaje automático en las canalizaciones de datos aumenta la capacidad para extraer estadísticas de los datos. En este curso, veremos formas de incluir el aprendizaje automático en las canalizaciones de datos en Google Cloud. Para una personalización escasa o nula, en el curso se aborda AutoML. Para obtener más capacidades de aprendizaje automático a medida, el curso presenta Notebooks y BigQuery Machine Learning (BigQuery ML). Además, en este curso se aborda cómo llevar a producción soluciones de aprendizaje automático con Vertex AI.

Más información

En este curso, aprenderás sobre los productos y servicios de macrodatos y aprendizaje automático de Google Cloud involucrados en el ciclo de vida de datos a IA. También explorarás los procesos, los desafíos y los beneficios de crear una canalización de macrodatos y modelos de aprendizaje automático con Vertex AI en Google Cloud.

Más información

Este curso ayuda a los participantes a crear un plan de estudio para el examen de certificación de PDE (Professional Data Engineer). Los alumnos conocerán la amplitud y el alcance de los dominios que se incluyen en el examen. Además, evaluarán su nivel de preparación para el examen y crearán un plan de estudio personal.

Más información

Welcome Gamers! Learn Google Cloud's Vertex AI, all while having fun! Vertex AI is Google Cloud's unified ML platform for solving your tough business problems. You will compete to see who can finish the game with the highest score. Earn the points by completing the steps in the lab.... and get bonus points for speed! Be sure to click "End" when you're done with each lab to get the maximum points. All players will be awarded the game badge.

Más información

Earn a skill badge by completing the Explore Machine Learning Models with Explainable AI quest, where you will learn how to do the following using Explainable AI: build and deploy a model to an AI platform for serving (prediction), use the What-If Tool with an image recognition model, identify bias in mortgage data using the What-If Tool, and compare models using the What-If Tool to identify potential bias. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge quest and the final assessment challenge lab to receive a skill badge that you can share with your network.

Más información

Machine Learning is one of the most innovative fields in technology, and the Google Cloud Platform has been instrumental in furthering its development. With a host of APIs, Google Cloud has a tool for just about any machine learning job. In this advanced-level course, you will get hands-on practice with machine learning at scale and how to employ the advanced ML infrastructure available on Google Cloud.

Más información

The hands-on labs in this Quest are structured to give experienced app developers hands-on practice with the state-of-the-art developing applications in Google Cloud. The topics align with the Google Cloud Certified Professional Cloud Developer Certification. These labs follow the sequence of activities needed to create and deploy an app in Google Cloud from beginning to end. Be aware that while practice with these labs will increase your skills and abilities, it is recommended that you also review the exam guide and other available preparation resources.

Más información

In this advanced-level quest, you will learn how to harness serious Google Cloud computing power to run big data and machine learning jobs. The hands-on labs will give you use cases, and you will be tasked with implementing big data and machine learning practices utilized by Google’s very own Solutions Architecture team. From running Big Query analytics on tens of thousands of basketball games, to training TensorFlow image classifiers, you will quickly see why Google Cloud is the go-to platform for running big data and machine learning jobs.

Más información

¿Macrodatos, aprendizaje automático y datos científicos? Parece la combinación perfecta. En esta Quest de nivel avanzado, obtendrá experiencia práctica en servicios de GCP como Big Query, Dataproc y Tensorflow, aplicándolos a casos prácticos en los que se usan conjuntos de datos científicos de la vida real. Mediante la adquisición de experiencia en tareas como el análisis de datos de terremotos y la agregación de imágenes satelitales, Scientific Data Processing lo ayudará a expandir sus habilidades en macrodatos y aprendizaje automático para que pueda solucionar problemas propios relacionados con un amplio espectro de disciplinas científicas.

Más información

Esta es la primera de las dos Quests de labs prácticos derivada de los ejercicios del libro Data Science on Google Cloud Platform de Valliappa Lakshmanan, editado por O'Reilly Media, Inc. En esta primera Quest, en el capítulo 8, tiene la oportunidad de practicar todos los aspectos de la transferencia, la preparación, el procesamiento, las consultas, la exploración y la visualización de los conjuntos de datos con las herramientas y los servicios de Google Cloud Platform.

Más información

No es ningún secreto que el aprendizaje automático es uno de los campos de mayor crecimiento en tecnología, y Google Cloud Platform desempeñó un papel decisivo como impulsor de su desarrollo. Con una gran cantidad de API, GCP cuenta con una herramienta para casi cualquier trabajo de aprendizaje automático. En esta Quest de nivel avanzado, adquirirá experiencia práctica en las API de aprendizaje automático cuando complete los labs Cómo implementar un chatbot de IA con Dialogflow y Cómo detectar etiquetas, rostros y puntos de referencia en imágenes con la API de Cloud Vision, entre otros.

Más información

Los macrodatos, el aprendizaje automático y la Inteligencia Artificial son temas informáticos populares en la actualidad; sin embargo, estos campos son muy especializados y es difícil conseguir material básico. Por suerte, Google Cloud proporciona servicios fáciles de usar en estas áreas y, con este curso de nivel básico, puedes dar tus primeros pasos con herramientas como BigQuery, la API de Cloud Speech y Video Intelligence.

Más información

This advanced-level quest is unique amongst the other catalog offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Data Engineer Certification. From Big Query, to Dataprep, to Cloud Composer, this quest is composed of specific labs that will put your Google Cloud data engineering knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, you will need other preparation, too. The exam is quite challenging and external studying, experience, and/or background in cloud data engineering is recommended. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of the Engineer Data in the Google Cloud to receive an exclusive Google Cloud digital badge.

Más información

En esta Quest de nivel básico, adquirirá experiencia práctica en las herramientas y los servicios fundamentales de Google Cloud Platform. GCP Essentials es la primera Quest recomendada para el estudiante de Google Cloud. Ingresará con poco o ningún conocimiento previo sobre la nube, y saldrá con experiencia práctica que podrá aplicar a su primer proyecto de GCP. Desde la escritura de comandos de Cloud Shell y la implementación de su primera máquina virtual hasta la ejecución de aplicaciones en Kubernetes Engine o mediante el balanceo de cargas, GCP Essentials es una excelente introducción a las funciones básicas de la plataforma. En los videos de 1 minuto, se le explicarán los conceptos clave de cada lab.

Más información