Inscreva-se Fazer login

Aplique suas habilidades no console do Google Cloud

Alina Draichuk

Participante desde 2022

Liga Prata

10075 pontos
Guia de estudo para Engenheiro profissional de aprendizado de máquina Earned Aug 28, 2025 EDT
Como modernizar data lakes e data warehouses com o Google Cloud Earned Sep 28, 2024 EDT
Store, Process, and Manage Data on Google Cloud - Console Earned Sep 22, 2024 EDT
Processamento de dados sem servidor com o Dataflow: fundamentos Earned Sep 6, 2024 EDT
Preparação para sua jornada da certificação Professional Data Engineer Earned Sep 6, 2024 EDT
Gerar insights a partir de dados do BigQuery Earned Feb 25, 2023 EST
Preparar dados para APIs de ML no Google Cloud Earned Feb 18, 2023 EST
Criar um data warehouse com o BigQuery Earned Feb 5, 2023 EST
Share Data Using Google Data Cloud Earned Feb 4, 2023 EST
Applying Machine Learning to Your Data with Google Cloud - Português Brasileiro Earned Dec 16, 2022 EST
Analyzing and Visualizing Data in Looker Earned Oct 30, 2022 EDT
Exploring and Preparing Your Data with BigQuery - Português Brasileiro Earned Oct 22, 2022 EDT
Achieving Advanced Insights with BigQuery - Português Brasileiro Earned Oct 15, 2022 EDT
Creating New BigQuery Datasets and Visualizing Insights - Português Brasileiro Earned Oct 12, 2022 EDT

Este curso ajuda a criar um plano de estudo para o exame de certificação Professional Machine Learning Engineer (PMLE). É possível conferir a amplitude e o escopo dos domínios abordados no exame. Os estudantes também podem acompanhar os preparativos para o exame e criar planos de estudo individuais.

Saiba mais

Os dois principais componentes de um pipeline de dados são data lakes e warehouses. Neste curso, destacamos os casos de uso para cada tipo de armazenamento e as soluções de data lake e warehouse disponíveis no Google Cloud de forma detalhada e técnica. Além disso, também descrevemos o papel de um engenheiro de dados, os benefícios de um pipeline de dados funcional para operações comerciais e analisamos por que a engenharia de dados deve ser feita em um ambiente de nuvem. Este é o primeiro curso da série "Engenharia de dados no Google Cloud". Após a conclusão, recomendamos que você comece o curso "Como criar pipelines de dados em lote no Google Cloud".

Saiba mais

Cloud Storage, Cloud Functions, and Cloud Pub/Sub are all Google Cloud Platform services that can be used to store, process, and manage data. All three services can be used together to create a variety of data-driven applications. In this skill badge you will use Cloud Storage to store images, Cloud Functions to process the images, and Cloud Pub/Sub to send the images to another application.

Saiba mais

Este é o primeiro de uma série de três cursos sobre processamento de dados sem servidor com o Dataflow. Nele, vamos relembrar o que é o Apache Beam e qual é a relação entre ele e o Dataflow. Depois, falaremos sobre a visão do Apache Beam e os benefícios do framework de portabilidade desse modelo de programação. Com esse processo, o desenvolvedor pode usar a linguagem de programação favorita com o back-end de execução que quiser. Em seguida, mostraremos como o Dataflow permite a separação entre a computação e o armazenamento para economizar dinheiro. Além disso, você vai aprender como as ferramentas de identidade, acesso e gerenciamento interagem com os pipelines do Dataflow. Por fim, vamos ver como implementar o modelo de segurança ideal para seu caso de uso no Dataflow.

Saiba mais

Este curso ajuda estudantes a criar um plano de estudo para o exame de certificação PDE (Professional Data Engineer). É possível conferir a amplitude e o escopo dos domínios abordados no exame. Os estudantes também podem acompanhar os preparativos para o exame e criar planos de estudos individuais.

Saiba mais

Conclua o selo de habilidade introdutório Gerar insights a partir de dados do BigQuery para mostrar que você sabe gravar consultas SQL, consultar tabelas públicas e carregar dados de amostra no BigQuery, solucionar erros comuns de sintaxe com o validador de consultas no BigQuery e criar relatórios no Looker Studio fazendo a conexão com dados do BigQuery. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência nos produtos e serviços do Cloud, comprovando sua capacidade de aplicar esse conhecimento em um ambiente prático e interativo. Conclua este curso com selo de habilidade e o laboratório com desafio da avaliação final para receber um selo digital que pode ser compartilhado com seus contatos.

Saiba mais

Conquiste o selo de habilidade introdutório Preparar dados para APIs de ML no Google Cloud para demonstrar que você é capaz de: limpar dados com o Dataprep by Trifacta, executar pipelines de dados no Dataflow, criar clusters e executar jobs do Apache Spark no Dataproc e chamar APIs de ML, incluindo as APIs Cloud Natural Language, Google Cloud Speech-to-Text e Video Intelligence. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Google Cloud e testam sua habilidade de aplicar esse conhecimento em um ambiente prático e interativo. Conclua este curso com selo de habilidade e o laboratório com desafio da avaliação final para receber um selo digital que pode ser compartilhado nas suas redes sociais e currículo.

Saiba mais

Conclua o selo de habilidade intermediário Criar um data warehouse com o BigQuery para mostrar que você sabe mesclar dados para criar novas tabelas; solucionar problemas de mesclagens; adicionar dados ao final com uniões; criar tabelas particionadas por data; além de trabalhar com JSON, matrizes e structs no BigQuery. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência nos produtos e serviços do Cloud, comprovando sua capacidade de aplicar o conhecimento em um ambiente prático e interativo. Conclua o curso com selo de habilidade e o laboratório com desafio da avaliação final para receber uma certificação digital que você pode compartilhar com seus contatos.

Saiba mais

Earn a skill badge by completing the Share Data Using Google Data Cloud course, where you will gain practical experience with Google Cloud Data Sharing Partners, which have proprietary datasets that customers can use for their analytics use cases. Customers subscribe to this data, query it within their own platform, then augment it with their own datasets and use their visualization tools for their customer facing dashboards. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge course, and final assessment challenge lab, to receive a digital badge that you can share with your network.

Saiba mais

Neste curso, vamos definir o que é machine learning e como ele pode beneficiar seu negócio. Você vai conferir algumas demonstrações do ML em ação e aprender termos importantes da área, como instâncias, atributos e rótulos. Nos laboratórios interativos, você vai praticar a invocação de APIs de ML pré-treinadas e criar seus próprios modelos de machine learning usando apenas SQL no BigQuery ML.

Saiba mais

In this course, you learn how to do the kind of data exploration and analysis in Looker that would formerly be done primarily by SQL developers or analysts. Upon completion of this course, you will be able to leverage Looker's modern analytics platform to find and explore relevant content in your organization’s Looker instance, ask questions of your data, create new metrics as needed, and build and share visualizations and dashboards to facilitate data-driven decision making.

Saiba mais

Neste curso, conhecemos os desafios mais comuns enfrentados pelos analistas de dados e como resolvê-los com as ferramentas de big data no Google Cloud. Ao longo do caminho, você vai aprender um pouco de SQL e se familiarizar com o uso do BigQuery e do Dataprep para analisar e transformar seus conjuntos de dados. Este é o primeiro curso da série From Data to Insights with Google Cloud. Depois de concluir este curso, inscreva-se no curso Creating New BigQuery Datasets and Visualizing Insights.

Saiba mais

O terceiro curso desta série é "Achieving Advanced Insights with BigQuery". Para continuar desenvolvendo seus conhecimentos sobre SQL, vamos aprender a usar funções avançadas e dividir uma consulta completa em etapas gerenciáveis. Você também vai conhecer a arquitetura interna do BigQuery (armazenamento fragmentado com base em colunas) e tópicos avançados do SQL, como campos aninhados e repetidos usando matrizes e structs. Por fim, vamos aprender a otimizar consultas para melhorar o desempenho e a proteger seus dados com visualizações autorizadas. Depois de concluir este curso, inscreva-se no "Applying Machine Learning to Your Data with Google Cloud".

Saiba mais

Este é o segundo curso da série "Data to Insights". Vamos aprender a fazer a ingestão de novos conjuntos de dados externos no BigQuery e visualizá-los no Looker Studio. Também vamos analisar conceitos intermediários de SQL, como as operações JOIN e UNION em várias tabelas, para analisar dados de diversas fontes. Observação: Mesmo que você tenha experiência em SQL, há aspectos específicos do BigQuery (como usar o cache de consultas e os caracteres curinga de tabela) que podem ser novidade para você. Depois de terminar este curso, faça sua inscrição no "Achieving Advanced Insights with BigQuery".

Saiba mais