Sunil Warghude
Member since 2020
Member since 2020
This course equips machine learning practitioners with the essential tools, techniques, and best practices for evaluating both generative and predictive AI models. Model evaluation is a critical discipline for ensuring that ML systems deliver reliable, accurate, and high-performing results in production. Participants will gain a deep understanding of various evaluation metrics, methodologies, and their appropriate application across different model types and tasks. The course will emphasize the unique challenges posed by generative AI models and provide strategies for tackling them effectively. By leveraging Google Cloud's Vertex AI platform, participants will learn how to implement robust evaluation processes for model selection, optimization, and continuous monitoring.
Artificial Intelligence (AI) offers transformative possibilities, but it also introduces new security challenges. This course equips security and data protection leaders with strategies to securely manage AI within their organizations. Learn a framework for proactively identifying and mitigating AI-specific risks, protecting sensitive data, ensuring compliance, and building a resilient AI infrastructure. Pick use cases from four different industries to explore how these strategies apply in real-world scenarios.
This course is dedicated to equipping you with the knowledge and tools needed to uncover the unique challenges faced by MLOps teams when deploying and managing Generative AI models, and exploring how Vertex AI empowers AI teams to streamline MLOps processes and achieve success in Generative AI projects.
In this course, you learn how Gemini, a generative AI-powered collaborator from Google Cloud, helps developers build applications. You learn how to prompt Gemini to explain code, recommend Google Cloud services, and generate code for your applications. Using a hands-on lab, you experience how Gemini improves the application development workflow. Duet AI was renamed to Gemini, our next-generation model.
Complete the introductory Prompt Design in Vertex AI skill badge to demonstrate skills in the following: prompt engineering, image analysis, and multimodal generative techniques, within Vertex AI. Discover how to craft effective prompts, guide generative AI output, and apply Gemini models to real-world marketing scenarios. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge course and the final assessment challenge lab to receive a skill badge that you can share with your network.
Complete the intermediate Explore Generative AI with the Gemini API in Vertex AI skill badge to demonstrate skills in the following: text generation, image and video analysis for enhanced content creation, and applying function calling techniques within the Gemini API. Discover how to leverage sophisticated Gemini techniques, explore multimodal content generation, and expand the capabilities of your AI-powered projects.
Complete the intermediate Inspect Rich Documents with Gemini Multimodality and Multimodal RAG skill badge to demonstrate skills in the following: using multimodal prompts to extract information from text and visual data, generating a video description, and retrieving extra information beyond the video using multimodality with Gemini; building metadata of documents containing text and images, getting all relevant text chunks, and printing citations by using Multimodal Retrieval Augmented Generation (RAG) with Gemini. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge course and the final assessment challenge lab to receive a skill badge that you can share with your network.
Generative AI applications can create new user experiences that were nearly impossible before the invention of large language models (LLMs). As an application developer, how can you use generative AI to build engaging, powerful apps on Google Cloud? In this course, you'll learn about generative AI applications and how you can use prompt design and retrieval augmented generation (RAG) to build powerful applications using LLMs. You'll learn about a production-ready architecture that can be used for generative AI applications and you'll build an LLM and RAG-based chat application.
This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.
This course introduces the AI and machine learning (ML) offerings on Google Cloud that build both predictive and generative AI projects. It explores the technologies, products, and tools available throughout the data-to-AI life cycle, encompassing AI foundations, development, and solutions. It aims to help data scientists, AI developers, and ML engineers enhance their skills and knowledge through engaging learning experiences and practical hands-on exercises.
Complete the intermediate Develop GenAI Apps with Gemini and Streamlit skill badge to demonstrate skills in the following: text generation, applying function calls with the Python SDK and the Gemini API, and deploying a Streamlit application with Cloud Run. You will explore different ways to prompt Gemini for text generation, use Cloud Shell to test and iterate on a Streamlit application, and then package it as a Docker container deployed in Cloud Run. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge course and the final assessment challenge lab to receive a skill badge that you can share with your network.
Earn the intermediate skill badge by completing the Build and Deploy Machine Learning Solutions on Vertex AI skill badge course, where you learn how to use Google Cloud's Vertex AI platform, AutoML, and custom training services to train, evaluate, tune, explain, and deploy machine learning models.
In this course, you learn how Gemini, a generative AI-powered collaborator from Google Cloud, helps you use Google products and services to develop, test, deploy, and manage applications. With help from Gemini, you learn how to develop and build a web application, fix errors in the application, develop tests, and query data. Using a hands-on lab, you experience how Gemini improves the software development lifecycle (SDLC). Duet AI was renamed to Gemini, our next-generation model.
In this course, you learn how Gemini, a generative AI-powered collaborator from Google Cloud, helps engineers manage infrastructure. You learn how to prompt Gemini to find and understand application logs, create a GKE cluster, and investigate how to create a build environment. Using a hands-on lab, you experience how Gemini improves the DevOps workflow. Duet AI was renamed to Gemini, our next-generation model.
In this course, you learn how Gemini, a generative AI-powered collaborator from Google Cloud, helps analyze customer data and predict product sales. You also learn how to identify, categorize, and develop new customers using customer data in BigQuery. Using hands-on labs, you experience how Gemini improves data analysis and machine learning workflows. Duet AI was renamed to Gemini, our next-generation model.
In this course, you learn how Gemini, a generative AI-powered collaborator from Google Cloud, helps administrators provision infrastructure. You learn how to prompt Gemini to explain infrastructure, deploy GKE clusters and update existing infrastructure. Using a hands-on lab, you experience how Gemini improves the GKE deployment workflow. Duet AI was renamed to Gemini, our next-generation model.
In this course, you learn how Gemini, a generative AI-powered collaborator from Google Cloud, helps network engineers create, update, and maintain VPC networks. You learn how to prompt Gemini to provide specific guidance for your networking tasks, beyond what you would receive from a search engine. Using a hands-on lab, you experience how Gemini makes it easier for you to work with Google Cloud VPC networks. Duet AI was renamed to Gemini, our next-generation model.
In this course, you learn how Gemini, a generative AI-powered collaborator from Google Cloud, helps you secure your cloud environment and resources. You learn how to deploy example workloads into an environment in Google Cloud, identify security misconfigurations with Gemini, and remediate security misconfigurations with Gemini. Using a hands-on lab, you experience how Gemini improves your cloud security posture. Duet AI was renamed to Gemini, our next-generation model.
In this self-paced training course, participants learn mitigations for attacks at many points in a Google Cloud-based infrastructure, including Distributed Denial-of-Service attacks, phishing attacks, and threats involving content classification and use. They also learn about the Security Command Center, cloud logging and audit logging, and using Forseti to view overall compliance with your organization's security policies.
This self-paced training course gives participants broad study of security controls and techniques on Google Cloud. Through recorded lectures, demonstrations, and hands-on labs, participants explore and deploy the components of a secure Google Cloud solution, including Cloud Storage access control technologies, Security Keys, Customer-Supplied Encryption Keys, API access controls, scoping, shielded VMs, encryption, and signed URLs. It also covers securing Kubernetes environments.
This self-paced training course gives participants broad study of security controls and techniques on Google Cloud. Through recorded lectures, demonstrations, and hands-on labs, participants explore and deploy the components of a secure Google Cloud solution, including Cloud Identity, Resource Manager, IAM, Virtual Private Cloud firewalls, Cloud Load Balancing, Cloud Peering, Cloud Interconnect, and VPC Service Controls. This is the first course of the Security in Google Cloud series. After completing this course, enroll in the Security Best Practices in Google Cloud course.
Service level indicators (SLIs) and service level objectives (SLOs) are fundamental tools for measuring and managing reliability. In this course, students learn approaches for devising appropriate SLIs and SLOs and managing reliability through the use of an error budget.
This course teaches participants techniques for monitoring and improving infrastructure and application performance in Google Cloud. Using a combination of presentations, demos, hands-on labs, and real-world case studies, attendees gain experience with full-stack monitoring, real-time log management and analysis, debugging code in production, tracing application performance bottlenecks, and profiling CPU and memory usage.
In this course, "Architecting with Google Kubernetes Engine: Foundations," you get a review of the layout and principles of Google Cloud, followed by an introduction to creating and managing software containers and an introduction to the architecture of Kubernetes. This is the first course of the Architecting with Google Kubernetes Engine series. After completing this course, enroll in the Architecting with Google Kubernetes Engine: Workloads course.
This course helps you structure your preparation for the Associate Cloud Engineer exam. You will learn about the Google Cloud domains covered by the exam and how to create a study plan to improve your domain knowledge.
Google Cloud Fundamentals: Core Infrastructure introduces important concepts and terminology for working with Google Cloud. Through videos and hands-on labs, this course presents and compares many of Google Cloud's computing and storage services, along with important resource and policy management tools.
This accelerated on-demand course introduces participants to the comprehensive and flexible infrastructure and platform services provided by Google Cloud with a focus on Compute Engine. Through a combination of video lectures, demos, and hands-on labs, participants explore and deploy solution elements, including infrastructure components such as networks, systems and applications services. This course also covers deploying practical solutions including customer-supplied encryption keys, security and access management, quotas and billing, and resource monitoring.
This accelerated on-demand course introduces participants to the comprehensive and flexible infrastructure and platform services provided by Google Cloud with a focus on Compute Engine. Through a combination of video lectures, demos, and hands-on labs, participants explore and deploy solution elements, including infrastructure components such as networks, virtual machines and applications services. You will learn how to use the Google Cloud through the console and Cloud Shell. You'll also learn about the role of a cloud architect, approaches to infrastructure design, and virtual networking configuration with Virtual Private Cloud (VPC), Projects, Networks, Subnetworks, IP addresses, Routes, and Firewall rules.
Networking in Google cloud is a 6 part course series. Welcome to the first course of our six part course series, Networking in Google Cloud: Fundamentals. This course provides a comprehensive overview of core networking concepts, including networking fundamentals, virtual private clouds (VPCs), and the sharing of VPC networks. Additionally, the course covers network logging and monitoring techniques.
You have made it to the most exciting part of the Deutsche Bank Generative AI Fundamentals Class: Hands-on Labs. Let's put the knowledge you acquired during the session to practice! This part is totally optional, however, it is highly recommended! You will get the chance to earn a completion badge that you can include in your email signatures or share on LinkedIn. Now master your Gen AI skills through hands-on labs! Remember to click "End" after finishing each lab to claim your well-deserved points.
Complete the intermediate Build Infrastructure with Terraform on Google Cloud skill badge to demonstrate skills in the following: Infrastructure as Code (IaC) principles using Terraform, provisioning and managing Google Cloud resources with Terraform configurations, effective state management (local and remote), and modularizing Terraform code for reusability and organization.
Earn a skill badge by completing the Develop your Google Cloud Network course, where you learn multiple ways to deploy and monitor applications including how to: explore IAM rols and add/remove project access, create VPC networks, deploy and monitor Compute Engine VMs, write SQL queries, deploy and monitor VMs in Compute Engine, and deploy applications using Kubernetes with multiple deployment approaches. A skill badge is an exclusivedigital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge, and the final assessment challenge lab, to receive a skill badge that you can share with your network.
For everyone using Google Cloud Platform for the first time, getting familar with gcloud, Google Cloud's command line, will help you get up to speed faster. In this quest, you'll learn how to install and configure Cloud SDK, then use gcloud to perform some basic operations like creating VMs, networks, using BigQuery, and using gsutil to perform operations.
Complete the intermediate Deploy Kubernetes Applications on Google Cloud skill badge course to demonstrate skills in the following: Configuring and building Docker container images.Creating and managing Google Kubernetes Engine (GKE) clusters.Utilizing kubectl for efficient cluster management.Deploying Kubernetes applications with robust continuous delivery (CD) practices.
Complete the intermediate Implement Cloud Security Fundamentals on Google Cloud skill badge to demonstrate skills in the following: creating and assigning roles with Identity and Access Management (IAM); creating and managing service accounts; enabling private connectivity across virtual private cloud (VPC) networks; restricting application access using Identity-Aware Proxy; managing keys and encrypted data using Cloud Key Management Service (KMS); and creating a private Kubernetes cluster. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge course, and final assessment challenge lab, to receive a digital badge that you can share with your network.
Earn a skill badge by completing the Build a Secure Google Cloud Network skill badge course, where you will learn about multiple networking-related resources to build, scale, and secure your applications on Google Cloud.
In this introductory-level course, you get hands-on practice with the Google Cloud’s fundamental tools and services. Optional videos are provided to provide more context and review for the concepts covered in the labs. Google Cloud Essentials is a recommendeded first course for the Google Cloud learner - you can come in with little or no prior cloud knowledge, and come out with practical experience that you can apply to your first Google Cloud project. From writing Cloud Shell commands and deploying your first virtual machine, to running applications on Kubernetes Engine or with load balancing, Google Cloud Essentials is a prime introduction to the platform’s basic features.
Welcome Gamers! Learn Google Cloud's Vertex AI, all while having fun! Vertex AI is Google Cloud's unified ML platform for solving your tough business problems. You will compete to see who can finish the game with the highest score. Earn the points by completing the steps in the lab.... and get bonus points for speed! Be sure to click "End" when you're done with each lab to get the maximum points. All players will be awarded the game badge.
Welcome Gamers! Today's game is all about experimenting with Big Query for Machine Learning! Use real life case studies to learn various concepts of BQML and have fun. Take labs to earn points. The faster you complete the lab objectives, the higher your score.
Welcome Gamers! Test your skills and learn BigQuery, all while having fun! You will compete to see who can finish the game with the highest score. Earn the points by completing the steps in the lab.... and get bonus points for speed! Be sure to click "End" when you're done with each lab to get the maximum points. All players will be awarded the game badge.
In this game you will create and use document processors using the Document AI API, automatically extract information from digitally scanned paper forms, use the Document AI API with Python to create various processors, and create an end-to-end document processing pipeline.
Kubernetes is the most popular container orchestration system, and Google Kubernetes Engine was designed specifically to support managed Kubernetes deployments in Google Cloud. In this course, you will get hands-on practice configuring Docker images, containers, and deploying fully-fledged Kubernetes Engine applications.
Earn a skill badge by completing the Set Up an App Dev Environment on Google Cloud course, where you learn how to build and connect storage-centric cloud infrastructure using the basic capabilities of the of the following technologies: Cloud Storage, Identity and Access Management, Cloud Functions, and Pub/Sub. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge, and the final assessment challenge lab, to receive a skill badge that you can share with your network.
Complete the introductory Implementing Cloud Load Balancing for Compute Engine skill badge to demonstrate skills in the following: creating and deploying virtual machines in Compute Engine and configuring network and application load balancers.