Rejoindre Se connecter

Mettez en pratique vos compétences dans la console Google Cloud

gabriel cavalcante alves

Date d'abonnement : 2024

Ligue de Diamant

38450 points
Natural Language Processing on Google Cloud Earned mai 23, 2024 EDT
Computer Vision Fundamentals with Google Cloud Earned mai 17, 2024 EDT
Machine Learning Operations (MLOps) : premiers pas Earned mai 10, 2024 EDT
Systèmes de machine learning de production Earned mai 10, 2024 EDT
IA responsable : appliquer les principes concernant l'IA avec Google Cloud Earned mai 9, 2024 EDT
Machine learning au sein de l'entreprise Earned mai 6, 2024 EDT
Créer, entraîner et déployer des modèles de ML avec Keras sur Google Cloud Earned avr. 30, 2024 EDT
Launching into Machine Learning - Français Earned avr. 26, 2024 EDT
Présentation de l'IA et du machine learning sur Google Cloud Earned avr. 25, 2024 EDT
Ingénierie des caractéristiques Earned avr. 25, 2024 EDT
IA responsable pour les développeurs : interprétabilité et transparence Earned avr. 18, 2024 EDT
IA responsable pour les développeurs : équité et biais Earned avr. 18, 2024 EDT
Inspecter des documents enrichis avec Gemini multimodal et le RAG multimodal Earned avr. 17, 2024 EDT
Machine Learning Operations (MLOps) pour l'IA générative Earned avr. 17, 2024 EDT
Recherche vectorielle et embeddings Earned avr. 15, 2024 EDT
Introduction à Vertex AI Studio Earned avr. 15, 2024 EDT
Créer des modèles de création de légendes pour les images Earned avr. 15, 2024 EDT
Modèles Transformer et modèle BERT Earned avr. 14, 2024 EDT
Architecture encodeur/décodeur Earned avr. 12, 2024 EDT
Mécanisme d'attention Earned avr. 12, 2024 EDT
Introduction à la génération d'images Earned avr. 12, 2024 EDT
Conception de requêtes dans Vertex AI Earned avr. 11, 2024 EDT
Introduction à l'IA responsable Earned mars 19, 2024 EDT
Présentation des grands modèles de langage Earned mars 18, 2024 EDT
Présentation de l'IA générative Earned mars 18, 2024 EDT

This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.

En savoir plus

This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.

En savoir plus

Ce cours présente les outils et les bonnes pratiques MLOps pour déployer, évaluer, surveiller et exploiter des systèmes de ML en production sur Google Cloud. Le MLOps est une discipline axée sur le déploiement, le test, la surveillance et l'automatisation des systèmes de ML en production. Les ingénieurs en machine learning utilisent des outils pour améliorer et évaluer en permanence les modèles déployés. Ils collaborent avec des data scientists (ou peuvent occuper ce poste) qui développent des modèles permettant de déployer de manière rapide et rigoureuse les solutions de machine learning les plus performantes.

En savoir plus

Dans ce cours, nous abordons en détail les composants et les bonnes pratiques de construction de systèmes de ML hautes performances dans des environnements de production. Nous verrons aussi certaines des considérations les plus courantes concernant la construction de ces systèmes, telles que l'entraînement statique, l'entraînement dynamique, l'inférence statique, l'inférence dynamique, les tâches TensorFlow distribuées et les TPU. Ce cours a pour objectif d'explorer les caractéristiques d'un bon système de ML, au-delà de sa capacité à effectuer des prédictions correctes.

En savoir plus

Avec l'essor de l'utilisation de l'intelligence artificielle et du machine learning en entreprise, il est de plus en plus important de développer ces technologies de manière responsable. Pour beaucoup, le véritable défi réside dans la mise en pratique de l'IA responsable, qui s'avère bien plus complexe que dans la théorie. Si vous souhaitez découvrir comment opérationnaliser l'IA responsable dans votre organisation, ce cours est fait pour vous. Dans ce cours, vous allez apprendre comment Google Cloud procède actuellement, en s'appuyant sur des bonnes pratiques et les enseignements tirés, afin de vous fournir un framework pour élaborer votre propre approche d'IA responsable.

En savoir plus

Ce cours présente une approche pratique du workflow de ML avec une étude de cas dans laquelle une équipe est confrontée à plusieurs exigences métier et cas d'utilisation de ML. Cette équipe doit comprendre quels outils sont nécessaires pour gérer et gouverner les données, et trouver la meilleure approche pour les prétraiter. On présente à cette équipe trois options de création de modèles de ML pour deux cas d'utilisation spécifiques. Ce cours explique pourquoi l'équipe tire parti des avantages d'AutoML, de BigQuery ML ou de l'entraînement personnalisé pour atteindre ses objectifs.

En savoir plus

Ce cours porte sur la création de modèles de ML à l'aide de TensorFlow et Keras, l'amélioration de la précision des modèles de ML et l'écriture de modèles de ML pour une utilisation évolutive.

En savoir plus

Le cours commence par une discussion sur les données : vous découvrirez comment améliorer leur qualité et effectuer des analyses exploratoires. Ensuite, nous vous présenterons Vertex AI AutoML et vous expliquerons comment créer, entraîner et déployer un modèle de machine learning (ML) sans écrire une ligne de code. Vous découvrirez également les avantages de BigQuery ML. Enfin, nous verrons comment optimiser un modèle de ML, et en quoi la généralisation ainsi que l'échantillonnage peuvent vous aider à évaluer la qualité des modèles de ML destinés à un entraînement personnalisé.

En savoir plus

Ce cours présente les solutions d'IA et de machine learning (ML) de Google Cloud permettant de développer des projets d'IA prédictive et générative. Il décrit les technologies, produits et outils disponibles tout au long du cycle de vie des données à l'IA, en englobant les éléments de base, le développement et les solutions d'IA. Son but est d'aider les data scientists, les développeurs d'IA et les ingénieurs en ML à améliorer leurs compétences et connaissances par le biais d'expériences d'apprentissage captivantes et d'exercices pratiques.

En savoir plus

Ce cours présente les avantages liés à l'utilisation de Vertex AI Feature Store, ainsi que la manière d'améliorer la précision des modèles de ML et de déterminer les colonnes de données présentant les caractéristiques les plus utiles. Ce cours inclut également du contenu et des ateliers portant sur l'ingénierie des caractéristiques à l'aide de BigQuery ML, Keras et TensorFlow.

En savoir plus

Ce cours présente les concepts d'interprétabilité et de transparence de l'IA. Il explique en quoi la transparence de l'IA est importante pour les développeurs et les ingénieurs. Il explore des méthodes et des outils pratiques permettant d'atteindre l'interprétabilité et la transparence des modèles d'IA et des données.

En savoir plus

Ce cours présente le concept d'IA responsable et les principes associés. Il met en avant des techniques permettant d'identifier des données équitables ou biaisées, et de limiter les biais lors de l'utilisation de l'IA/du ML. Vous découvrirez des méthodes pratiques et des outils pour mettre en place de bonnes pratiques d'IA responsable à l'aide des produits Google Cloud et des outils Open Source.

En savoir plus

Terminez le cours intermédiaire Inspecter des documents enrichis avec Gemini multimodal et le RAG multimodal pour recevoir un badge démontrant vos compétences dans les domaines suivants : l'utilisation de requêtes multimodales pour extraire des informations de données textuelles et visuelles, la génération d'une description vidéo et la récupération d'informations qui ne sont pas incluses dans une vidéo en utilisant la multimodalité avec Gemini ; la création de métadonnées de documents contenant du texte et des images, la collecte de tous les éléments de texte pertinents, et l'impression de citations à l'aide de la génération augmentée par récupération (RAG, Retrieval Augmented Generation) multimodale avec Gemini. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et …

En savoir plus

Dans ce cours, vous allez acquérir les connaissances et les outils nécessaires pour identifier les problématiques uniques auxquelles les équipes MLOps sont confrontées lors du déploiement et de la gestion de modèles d'IA générative. Vous verrez également en quoi Vertex AI permet aux équipes d'IA de simplifier les processus MLOps et de faire aboutir leurs projets d'IA générative.

En savoir plus

Avec ce cours, explorez les technologies de recherche, les outils et les applications optimisés par l'IA. Découvrez la recherche sémantique, qui utilise les embeddings vectoriels (ou "plongements vectoriels"), la recherche hybride, qui combine les approches sémantique et par mots-clés, et la génération augmentée par récupération (RAG), qui réduit les hallucinations générées par l'IA en agissant comme un agent ancré. Enfin, acquérez une expérience pratique de Vertex AI Vector Search afin de créer votre moteur de recherche intelligent.

En savoir plus

Ce cours présente Vertex AI Studio, un outil permettant d'interagir avec des modèles d'IA générative, de prototyper des idées commerciales et de les envoyer en production. Au moyen d'un cas d'utilisation immersif, de leçons captivantes et d'un atelier pratique, vous allez découvrir le cycle de vie de la requête au produit. Vous apprendrez également à utiliser Vertex AI Studio pour les applications multimodales Gemini, la conception de requêtes, le prompt engineering (ingénierie des requêtes) et le réglage de modèles. L'objectif est de vous permettre d'exploiter tout le potentiel de l'IA générative dans vos projets avec Vertex AI Studio.

En savoir plus

Dans ce cours, vous allez apprendre à créer un modèle de sous-titrage d'images à l'aide du deep learning. Vous découvrirez les différents composants de ce type de modèle, comme l'encodeur et le décodeur, et comment l'entraîner et l'évaluer. À la fin du cours, vous serez en mesure de créer vos propres modèles de sous-titrage d'images et de les utiliser pour générer des sous-titres pour des images.

En savoir plus

Ce cours présente l'architecture Transformer et le modèle BERT (Bidirectional Encoder Representations from Transformers). Vous découvrirez quels sont les principaux composants de l'architecture Transformer, tels que le mécanisme d'auto-attention, et comment ils sont utilisés pour créer un modèle BERT. Vous verrez également les différentes tâches pour lesquelles le modèle BERT peut être utilisé, comme la classification de texte, les questions-réponses et l'inférence en langage naturel. Ce cours dure environ 45 minutes.

En savoir plus

Ce cours offre un aperçu de l'architecture encodeur/décodeur, une architecture de machine learning performante souvent utilisée pour les tâches "seq2seq", telles que la traduction automatique, la synthèse de texte et les questions-réponses. Vous découvrirez quels sont les principaux composants de l'architecture encodeur/décodeur, et comment entraîner et exécuter ces modèles. Dans le tutoriel d'atelier correspondant, vous utiliserez TensorFlow pour coder une implémentation simple de cette architecture afin de générer un poème en partant de zéro.

En savoir plus

Ce cours présente le mécanisme d'attention, une technique efficace permettant aux réseaux de neurones de se concentrer sur des parties spécifiques d'une séquence d'entrée. Vous découvrirez comment fonctionne l'attention et comment l'utiliser pour améliorer les performances de diverses tâches de machine learning, dont la traduction automatique, la synthèse de texte et les réponses aux questions.

En savoir plus

Ce cours présente les modèles de diffusion, une famille de modèles de machine learning qui s'est récemment révélée prometteuse dans le domaine de la génération d'images. Les modèles de diffusion trouvent leur origine dans la physique, et plus précisément dans la thermodynamique. Au cours des dernières années, ils ont gagné en popularité dans la recherche et l'industrie. Ils sont à la base de nombreux modèles et outils Google Cloud avancés de génération d'images. Ce cours vous présente les bases théoriques des modèles de diffusion, et vous explique comment les entraîner et les déployer sur Vertex AI.

En savoir plus

Terminez le cours d'introduction Conception de requêtes dans Vertex AI pour recevoir un badge démontrant vos compétences dans les domaines suivants : le prompt engineering (ingénierie des requêtes), l'analyse d'images et les techniques d'IA générative multimodale dans Vertex AI. Découvrez comment élaborer des requêtes efficaces, guider les résultats de l'IA générative et appliquer des modèles Gemini à des scénarios marketing concrets. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.

En savoir plus

Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA responsable, souligne son importance et décrit comment Google l'implémente dans ses produits. Il présente également les sept principes de l'IA de Google.

En savoir plus

Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce que sont les grands modèles de langage (LLM). Il inclut des cas d'utilisation et décrit comment améliorer les performances des LLM grâce au réglage des requêtes. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.

En savoir plus

Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA générative, décrit à quoi elle sert et souligne ce qui la distingue des méthodes de machine learning traditionnel. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.

En savoir plus