Unirse Acceder

Aplica tus habilidades en la consola de Google Cloud

gabriel cavalcante alves

Miembro desde 2024

Liga de Diamantes

38450 puntos
Natural Language Processing on Google Cloud Earned may 23, 2024 EDT
Computer Vision Fundamentals with Google Cloud Earned may 17, 2024 EDT
Operaciones de aprendizaje automático (MLOps): Primeros pasos Earned may 10, 2024 EDT
Sistemas de aprendizaje automático de producción Earned may 10, 2024 EDT
IA responsable: Aplica los principios de la IA con Google Cloud Earned may 9, 2024 EDT
Aprendizaje automático en empresas Earned may 6, 2024 EDT
Crea, entrena e implementa modelos de AA con Keras en Google Cloud Earned abr 30, 2024 EDT
Launching into Machine Learning - Español Earned abr 26, 2024 EDT
Introducción a la IA y el aprendizaje automático en Google Cloud Earned abr 25, 2024 EDT
Ingeniería de atributos Earned abr 25, 2024 EDT
IA responsable para desarrolladores: Interpretabilidad y transparencia Earned abr 18, 2024 EDT
IA responsable para desarrolladores: Equidad y sesgos Earned abr 18, 2024 EDT
Inspecciona documentos enriquecidos con Gemini multimodal y RAG multimodal Earned abr 17, 2024 EDT
Operaciones de aprendizaje automático (MLOps) para la IA generativa Earned abr 17, 2024 EDT
Búsqueda de vectores y embeddings Earned abr 15, 2024 EDT
Introducción a Vertex AI Studio Earned abr 15, 2024 EDT
Creación de modelos de generación de subtítulos de imágenes Earned abr 15, 2024 EDT
Modelos de transformadores y modelo BERT Earned abr 14, 2024 EDT
Arquitectura de codificador-decodificador Earned abr 12, 2024 EDT
Mecanismo de atención Earned abr 12, 2024 EDT
Introducción a la generación de imágenes Earned abr 12, 2024 EDT
Diseño de instrucciones en Vertex AI Earned abr 11, 2024 EDT
Introducción a la IA responsable Earned mar 19, 2024 EDT
Introducción a los modelos de lenguaje grandes Earned mar 18, 2024 EDT
Introducción a la IA generativa Earned mar 18, 2024 EDT

This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.

Más información

This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.

Más información

En este curso, se presentan a los participantes las herramientas y prácticas recomendadas de MLOps para implementar, evaluar, supervisar y operar sistemas de AA de producción en Google Cloud. Las MLOps son una disciplina enfocada en la implementación, prueba, supervisión y automatización de sistemas de AA en producción. Los ingenieros profesionales de aprendizaje automático usan herramientas para mejorar y evaluar continuamente los modelos implementados. Trabajan con científicos de datos (o pueden serlo) que desarrollan modelos para ofrecer velocidad y rigor en la implementación de modelos con el mejor rendimiento.

Más información

En este curso, analizaremos los componentes y las prácticas recomendadas de la creación de sistemas de AA de alto rendimiento en entornos de producción. Veremos algunas de las consideraciones más comunes tras la creación de estos sistemas, p. ej., entrenamiento estático, entrenamiento dinámico, inferencia estática, inferencia dinámica, TensorFlow distribuido y TPU. Este curso se enfoca en explorar las características que conforman un buen sistema de AA más allá de su capacidad de realizar predicciones correctas.

Más información

A medida que aumenta el uso empresarial de la inteligencia artificial y el aprendizaje automático, también crece la importancia de implementarlo responsablemente. El desafío para muchas personas es que hablar sobre la IA responsable puede ser más fácil que aplicarla. Si te interesa aprender cómo poner en funcionamiento la IA responsable en tu organización, este curso es para ti. En este curso, aprenderás cómo Google Cloud aplica estos principios en la actualidad, junto con las prácticas recomendadas y las lecciones aprendidas, para usarlos como marco de trabajo de modo que puedas crear tu propio enfoque de IA responsable.

Más información

En este curso, se aplica un enfoque real en el flujo de trabajo del AA a través de un caso de éxito. Un equipo de AA trabaja con varios requisitos empresariales y casos de uso de AA. El equipo debe comprender las herramientas necesarias para la administración de los datos y considerar el mejor enfoque para su procesamiento previo. Al equipo se le presentan tres opciones con las que puede crear modelos de AA para dos casos de uso. En el curso, se explica por qué el equipo usará AutoML, BigQuery ML o entrenamiento personalizado para lograr sus objetivos.

Más información

En este curso, se explica cómo crear modelos de AA con TensorFlow y Keras, cómo mejorar la exactitud de los modelos de AA y cómo escribir modelos de AA para uso escalado.

Más información

El curso comienza con un debate sobre los datos: cómo mejorar su calidad y cómo realizar análisis exploratorios de ellos. Describimos Vertex AI AutoML y cómo crear, entrenar e implementar un modelo de AA sin escribir una sola línea de código. Conocerás los beneficios de BigQuery ML. Luego, se analiza cómo optimizar un modelo de aprendizaje automático (AA) y cómo la generalización y el muestreo pueden ayudar a evaluar la calidad de los modelos de AA para el entrenamiento personalizado.

Más información

En este curso, se presentan las ofertas de aprendizaje automático (AA) en Google Cloud que compilan proyectos de IA predictiva y generativa. También se exploran las tecnologías, los productos y las herramientas disponibles durante el ciclo de vida desde los datos hasta la IA, que engloban los fundamentos, el desarrollo y las soluciones de IA. El objetivo es ayudar a científicos de datos, ingenieros de AA y desarrolladores de IA a mejorar sus habilidades y conocimientos a través de experiencias de aprendizaje atractivas y ejercicios prácticos.

Más información

En este curso, se exploran los beneficios de utilizar Vertex AI Feature Store, cómo mejorar la exactitud de los modelos de AA y cómo descubrir cuáles columnas de datos producen los atributos más útiles. El curso también incluye contenido y labs sobre la ingeniería de atributos en los que se usan BigQuery ML, Keras y TensorFlow.

Más información

En este curso, se presentan los conceptos de interpretabilidad y transparencia de la IA, así como se menciona la importancia de la transparencia de la IA para los ingenieros y desarrolladores. Se exploran métodos y herramientas funcionales para ayudar a lograr la interpretabilidad y transparencia en los modelos de IA y datos.

Más información

En este curso, se presentan los conceptos de la IA responsable y los principios de la IA. Se abordan técnicas para identificar de forma práctica la equidad y los sesgos, y mitigar los sesgos en las prácticas de IA/AA. Se exploran métodos y herramientas funcionales para implementar prácticas recomendadas de la IA responsable con productos de Google Cloud y herramientas de código abierto.

Más información

Completa la insignia de habilidad intermedia Inspecciona documentos enriquecidos con Gemini multimodal y RAG multimodal para demostrar tus habilidades para realizar las siguientes actividades: usar instrucciones multimodales para extraer información de datos visuales y de texto, generar la descripción de un video y recuperar información adicional más allá del video utilizando la multimodalidad con Gemini; crear metadatos de documentos que contengan imágenes y texto, obtener todos los fragmentos de texto relevantes e imprimir las citas con la generación mejorada por recuperación (RAG) multimodal con Gemini. Una insignia de habilidad es una insignia digital exclusiva que emite Google Cloud en reconocimiento de tu dominio de los productos y servicios de la plataforma, y que prueba tu capacidad de aplicar esos conocimientos en un entorno interactivo y práctico. Completa este curso de insignia de habilidad y el lab de desafío de la evaluación final para recibir una insignia que puedes com…

Más información

El objetivo de este curso es equiparte con los conocimientos y las herramientas que necesitas para descubrir los desafíos únicos que enfrentan los equipos de MLOps cuando implementan y administran modelos de IA generativa, y explorar cómo Vertex AI fortalece a los equipos de IA para optimizar los procesos de MLOps y alcanzar el éxito en los proyectos de IA generativa.

Más información

En este curso, explorarás tecnologías, herramientas y aplicaciones de búsqueda potenciadas por IA. Aprende sobre las búsquedas semánticas utilizando embeddings de vectores, acerca de las búsquedas híbridas combinando enfoques semánticos y de palabras clave, y sobre la generación mejorada por recuperación (RAG) minimizando las alucinaciones como un agente de IA fundamentado. Adquiere experiencia práctica con Vector Search de Vertex AI para desarrollar tu motor de búsqueda inteligente.

Más información

En este curso, se presenta Vertex AI Studio, una herramienta para interactuar con modelos de IA generativa, crear prototipos de ideas de negocio y llevarlas a producción. A través de un caso de uso envolvente, lecciones atractivas y un lab práctico, explorarás el ciclo de vida desde la instrucción hasta el producto y aprenderás cómo aprovechar Vertex AI Studio para aplicaciones multimodales de Gemini, diseño de instrucciones, ingeniería de instrucciones y ajuste de modelos. El objetivo es permitirte desbloquear el potencial de la IA generativa en tus proyectos con Vertex AI Studio.

Más información

En este curso, se te enseña a crear un modelo de generación de leyendas de imágenes con el aprendizaje profundo. Aprenderás sobre los distintos componentes de los modelos de generación de leyendas de imágenes, como el codificador y el decodificador, y cómo entrenar y evaluar tu modelo. Al final del curso, podrás crear tus propios modelos y usarlos para generar leyendas de imágenes.

Más información

En este curso, se presentan la arquitectura de transformadores y el modelo de Bidirectional Encoder Representations from Transformers (BERT). Aprenderás sobre los componentes principales de la arquitectura de transformadores, como el mecanismo de autoatención, y cómo se usa para crear el modelo BERT. También aprenderás sobre las diferentes tareas para las que puede usarse BERT, como la clasificación de texto, la respuesta de preguntas y la inferencia de lenguaje natural. Tardarás aproximadamente 45 minutos en completar este curso.

Más información

En este curso, se brinda un resumen de la arquitectura de codificador-decodificador, una arquitectura de aprendizaje automático importante y potente para realizar tareas de secuencia por secuencia, como las de traducción automática, resúmenes de texto y respuestas a preguntas. Aprenderás sobre los componentes principales de la arquitectura de codificador-decodificador y cómo entrenar y entregar estos modelos. En la explicación del lab, programarás una implementación sencilla de la arquitectura de codificador-decodificador en TensorFlow para generar poemas desde un comienzo.

Más información

Este curso es una introducción al mecanismo de atención, una potente técnica que permite a las redes neuronales enfocarse en partes específicas de una secuencia de entrada. Sabrás cómo funciona la atención y cómo puede utilizarse para mejorar el rendimiento de diversas tareas de aprendizaje automático, como la traducción automática, el resumen de textos y la respuesta a preguntas.

Más información

En este curso, se presenta una introducción a los modelos de difusión: una familia de modelos de aprendizaje automático que demostraron ser muy prometedores en el área de la generación de imágenes. Los modelos de difusión se inspiran en la física, específicamente, en la termodinámica. En los últimos años, los modelos de difusión se han vuelto populares tanto en investigaciones como en la industria. Los modelos de difusión respaldan muchos de los modelos de generación de imágenes y herramientas vanguardistas de Google Cloud. En este curso, se presenta la teoría detrás de los modelos de difusión y cómo entrenarlos y, luego, implementarlos en Vertex AI.

Más información

Completa la insignia de habilidad del curso introductorio Diseño de instrucciones en Vertex AI y demuestra tus habilidades para realizar las siguientes actividades: ingeniería de instrucciones, análisis de imágenes y aplicación de técnicas generativas multimodales en Vertex AI. Descubre cómo crear instrucciones eficaces, guía las respuestas de la IA generativa y aplica modelos de Gemini en situaciones de marketing de la vida real. Una insignia de habilidad es una insignia digital exclusiva que emite Google Cloud en reconocimiento de tu dominio de los productos y servicios de la plataforma, y que prueba tu capacidad de aplicar esos conocimientos en un entorno interactivo y práctico. Completa este curso de insignia de habilidad y el lab de desafío de la evaluación final para recibir una insignia que puedes compartir con tu red.

Más información

Este es un curso introductorio de microaprendizaje destinado a explicar qué es la IA responsable, por qué es importante y cómo la implementa Google en sus productos. También se presentan los 7 principios de la IA de Google.

Más información

Este es un curso introductorio de microaprendizaje en el que se explora qué son los modelos de lenguaje grandes (LLM), sus casos de uso y cómo se puede utilizar el ajuste de instrucciones para mejorar el rendimiento de los LLM. También abarca las herramientas de Google para ayudarte a desarrollar tus propias aplicaciones de IA generativa.

Más información

Este es un curso introductorio de microaprendizaje destinado a explicar qué es la IA generativa, cómo se utiliza y en qué se diferencia de los métodos de aprendizaje automático tradicionales. También abarca las herramientas de Google para ayudarte a desarrollar tus propias aplicaciones de IA generativa.

Más información