Gabung Login

Terapkan keterampilan Anda di Konsol Google Cloud

Auriane MAYMARD

Menjadi anggota sejak 2023

Silver League

11560 poin
Machine Learning Operations (MLOps) with Vertex AI: Manage Features Earned Mar 1, 2024 EST
Computer Vision Fundamentals with Google Cloud Earned Feb 29, 2024 EST
Production Machine Learning Systems Earned Feb 20, 2024 EST
Pengantar AI dan Machine Learning di Google Cloud Earned Feb 9, 2024 EST
Penelusuran Vektor dan Embedding Earned Feb 7, 2024 EST
Pengantar AI Generatif Earned Jul 14, 2023 EDT
Natural Language Processing on Google Cloud Earned Jul 14, 2023 EDT
Pengantar Model Bahasa Besar Earned Mei 26, 2023 EDT

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Learners will get hands-on practice using Vertex AI Feature Store's streaming ingestion at the SDK layer.

Pelajari lebih lanjut

This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.

Pelajari lebih lanjut

This course covers how to implement the various flavors of production ML systems— static, dynamic, and continuous training; static and dynamic inference; and batch and online processing. You delve into TensorFlow abstraction levels, the various options for doing distributed training, and how to write distributed training models with custom estimators. This is the second course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Image Understanding with TensorFlow on Google Cloud course.

Pelajari lebih lanjut

Kursus ini memperkenalkan penawaran AI dan machine learning (ML) di Google Cloud yang membangun project AI prediktif dan generatif. Kursus ini akan membahas teknologi, produk, dan alat yang tersedia di seluruh siklus proses data ke AI, yang mencakup fondasi, pengembangan, dan solusi AI. Kursus ini bertujuan membantu data scientist, developer AI, dan engineer ML meningkatkan keterampilan dan pengetahuan mereka melalui pengalaman belajar yang menarik dan latihan praktik langsung.

Pelajari lebih lanjut

Menjelajahi teknologi, alat, dan aplikasi penelusuran yang didukung AI dalam kursus ini. Mempelajari penelusuran semantik dengan memanfaatkan embedding vektor, penelusuran campuran yang menggabungkan pendekatan semantik dan kata kunci, serta Retrieval-Augmented Generation (RAG) yang meminimalkan halusinasi AI sebagai agen AI yang di-grounding. Mendapatkan pengalaman praktis dengan Vertex AI Vector Search untuk membangun mesin telusur yang cerdas.

Pelajari lebih lanjut

Ini adalah kursus pengantar pembelajaran mikro yang bertujuan untuk mendefinisikan AI Generatif, cara penggunaannya, dan perbedaannya dari metode machine learning konvensional. Kursus ini juga mencakup Alat-alat Google yang dapat membantu Anda mengembangkan aplikasi AI Generatif Anda sendiri.

Pelajari lebih lanjut

This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.

Pelajari lebih lanjut

Ini adalah kursus pengantar pembelajaran mikro yang membahas definisi model bahasa besar (LLM), kasus penggunaannya, dan cara menggunakan prompt tuning untuk meningkatkan performa LLM. Kursus ini juga membahas beberapa alat Google yang dapat membantu Anda mengembangkan aplikasi AI Generatif Anda sendiri.

Pelajari lebih lanjut