En este curso, se presentan a los participantes las herramientas y prácticas recomendadas de MLOps para implementar, evaluar, supervisar y operar sistemas de AA de producción en Google Cloud. Las MLOps son una disciplina enfocada en la implementación, prueba, supervisión y automatización de sistemas de AA en producción. Los estudiantes obtendrán experiencia práctica con la transferencia de transmisión de Vertex AI Feature Store en la capa de SDK.
This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.
En este curso, analizaremos los componentes y las prácticas recomendadas de la creación de sistemas de AA de alto rendimiento en entornos de producción. Veremos algunas de las consideraciones más comunes tras la creación de estos sistemas, p. ej., entrenamiento estático, entrenamiento dinámico, inferencia estática, inferencia dinámica, TensorFlow distribuido y TPU. Este curso se enfoca en explorar las características que conforman un buen sistema de AA más allá de su capacidad de realizar predicciones correctas.
En este curso, se presentan las ofertas de aprendizaje automático (AA) en Google Cloud que compilan proyectos de IA predictiva y generativa. También se exploran las tecnologías, los productos y las herramientas disponibles durante el ciclo de vida desde los datos hasta la IA, que engloban los fundamentos, el desarrollo y las soluciones de IA. El objetivo es ayudar a científicos de datos, ingenieros de AA y desarrolladores de IA a mejorar sus habilidades y conocimientos a través de experiencias de aprendizaje atractivas y ejercicios prácticos.
En este curso, explorarás tecnologías, herramientas y aplicaciones de búsqueda potenciadas por IA. Aprende sobre las búsquedas semánticas utilizando embeddings de vectores, acerca de las búsquedas híbridas combinando enfoques semánticos y de palabras clave, y sobre la generación mejorada por recuperación (RAG) minimizando las alucinaciones como un agente de IA fundamentado. Adquiere experiencia práctica con Vector Search de Vertex AI para desarrollar tu motor de búsqueda inteligente.
Este es un curso introductorio de microaprendizaje destinado a explicar qué es la IA generativa, cómo se utiliza y en qué se diferencia de los métodos de aprendizaje automático tradicionales. También abarca las herramientas de Google para ayudarte a desarrollar tus propias aplicaciones de IA generativa.
This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.
Este es un curso introductorio de microaprendizaje en el que se explora qué son los modelos de lenguaje grandes (LLM), sus casos de uso y cómo se puede utilizar el ajuste de instrucciones para mejorar el rendimiento de los LLM. También abarca las herramientas de Google para ayudarte a desarrollar tus propias aplicaciones de IA generativa.