Jerrawi G.
Date d'abonnement : 2021
Ligue d'Or
12160 points
Date d'abonnement : 2021
Ce cours a pour objectif d'aider les participants à créer un plan de formation pour l'examen de certification Professional Data Engineer. Les participants découvriront l'étendue et le champ d'application des domaines abordés lors de l'examen, puis évalueront leur niveau de préparation à l'examen et créeront leur propre plan de formation.
Terminez le cours d'introduction Dégager des insights des données BigQuery pour recevoir un badge démontrant vos compétences dans les domaines suivants : l'écriture de requêtes SQL, l'interrogation de tables publiques, le chargement d'exemples de données dans BigQuery, la résolution d'erreurs de syntaxe courantes avec l'outil de validation des requêtes de BigQuery et la création de rapports dans Looker Studio en se connectant aux données BigQuery.
Terminez le cours intermédiaire Créer un entrepôt de données avec BigQuery pour recevoir un badge démontrant vos compétences dans les domaines suivants : la jointure de données pour créer des tables, la résolution des problèmes liés aux jointures, l'ajout de données avec des unions, la création de tables partitionnées par date, et l'utilisation d'objets JSON, ARRAY et STRUCT dans BigQuery. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud, et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge
Terminez le cours d'introduction Préparer des données pour les API de ML sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : le nettoyage des données avec Dataprep by Trifacta, l'exécution de pipelines de données dans Dataflow, la création de clusters et l'exécution de jobs Apache Spark dans Dataproc, et l'appel d'API de ML comme l'API Cloud Natural Language, l'API Google Cloud Speech-to-Text et l'API Video Intelligence.
Earn a skill badge by completing the Share Data Using Google Data Cloud skill badge course, where you will gain practical experience with Google Cloud Data Sharing Partners, which have proprietary datasets that customers can use for their analytics use cases. Customers subscribe to this data, query it within their own platform, then augment it with their own datasets and use their visualization tools for their customer facing dashboards.
Terminez le cours intermédiaire Ingénierie des données pour la modélisation prédictive avec BigQuery ML pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création de pipelines de transformation des données dans BigQuery avec Dataprep by Trifacta ; l'utilisation de Cloud Storage, Dataflow et BigQuery pour créer des workflows ETL (Extract, Transform and Load) ; et la création de modèles de machine learning avec BigQuery ML.
Intégrer le machine learning à des pipelines de données renforce la capacité à dégager des insights des données. Ce cours passera en revue plusieurs façons d'intégrer le machine learning à des pipelines de données sur Google Cloud. Vous découvrirez AutoML pour les cas ne nécessitant que peu de personnalisation (voire aucune), ainsi que Notebooks et BigQuery ML pour les situations qui requièrent des capacités de machine learning plus adaptées. Enfin, vous apprendrez à utiliser des solutions de machine learning en production avec Vertex AI.
Ce cours vous aide à préparer l'examen pour obtenir la certification Associate Cloud Engineer. Vous découvrirez les domaines Google Cloud abordés dans l'examen et verrez comment créer un plan de formation pour améliorer vos connaissances de ces domaines.
Bienvenue dans le cours "Premiers pas avec Google Kubernetes Engine". Si vous vous intéressez à Kubernetes, une couche logicielle située entre vos applications et votre infrastructure matérielle, vous êtes au bon endroit. Google Kubernetes Engine vous permet d'accéder à Kubernetes en tant que service géré sur Google Cloud. L'objectif de ce cours est de vous présenter les principes de base de Google Kubernetes Engine (GKE), et de vous apprendre à conteneuriser et exécuter des applications dans Google Cloud. Le cours commence par une introduction aux principes de base de Google Cloud, puis se poursuit par une présentation des conteneurs et de Kubernetes, de l'architecture de Kubernetes et des opérations Kubernetes.
Ce cours à la demande accéléré présente aux participants les services complets et flexibles d'infrastructure et de plate-forme offerts par Google Cloud. À travers un ensemble de cours vidéo, de démonstrations et d'ateliers pratiques, les participants explorent et déploient des éléments de solution, y compris l'interconnexion sécurisée de réseaux, l'équilibrage de charge, l'autoscaling, l'automatisation de l'infrastructure et les services gérés.
Ce cours accéléré à la demande présente aux participants l'infrastructure complète et flexible de Google Cloud Platform ainsi que les services de plate-forme fournis, en s'intéressant plus particulièrement à Compute Engine. À travers un ensemble de vidéos de présentation, de démonstrations et d'ateliers pratiques, les participants découvrent et déploient des éléments de solution, y compris des composants d'infrastructure tels que les réseaux, les systèmes et les services applicatifs. Ce cours aborde également le déploiement de solutions pratiques, telles que les clés de chiffrement fournies par le client, la gestion de la sécurité et des accès, les quotas et la facturation, ainsi que la surveillance des ressources.
Ce cours accéléré à la demande présente aux participants les services complets et flexibles d'infrastructure et de plate-forme offerts par Google Cloud, en s'intéressant plus particulièrement à Compute Engine. À travers un ensemble de cours vidéo, de démonstrations et d'ateliers pratiques, les participants découvrent et déploient des éléments de solution, y compris des composants d'infrastructure tels que des réseaux, des machines virtuelles et des services d'applications. Vous découvrirez comment utiliser Google Cloud via la console et Cloud Shell. Vous en apprendrez également plus sur le rôle d'un architecte cloud, sur les approches de la conception d'infrastructure et sur la configuration de réseaux virtuels avec Virtual Private Cloud (VPC), les projets, les réseaux, les sous-réseaux, les adresses IP, les routes et les règles de pare-feu.
Cette quête d'introduction se compose d'ateliers pratiques qui vous permettent de vous familiariser avec les outils et services de base de Google Cloud Platform. "GCP Essentials" est la première quête recommandée pour les personnes s'intéressant à Google Cloud. Vous pouvez la suivre sans aucune connaissance (ou presque) du cloud et, une fois la quête terminée, vous disposerez de compétences pratiques qui vous seront utiles pour n'importe quel projet GCP. De l'écriture de lignes de commande Cloud Shell au déploiement de votre première machine virtuelle en passant par l'exécution d'applications sur Kubernetes Engine avec l'équilibrage de charge, "GCP Essentials" constitue une excellente introduction aux fonctionnalités de base de la plate-forme. Des vidéos d'une minute résument les concepts clés de ces ateliers.