Jia Jie Su
成为会员时间:2024
白银联赛
22705 积分
成为会员时间:2024
完成在 Google Cloud 上使用 Terraform 构建基础设施技能徽章中级课程, 展示您在以下方面的技能:在使用 Terraform 时遵循基础设施即代码 (IaC) 原则;利用 Terraform 配置 来预配和管理 Google Cloud 资源;管理有效状态(本地和远程);以及将 Terraform 代码模块化,以方便重复使用和整理。 技能徽章通过动手实验和挑战赛形式的评估,检验您对特定产品的实际知识掌握情况。完成课程即可获得徽章,也可直接参加实验室挑战赛, 快速获得徽章。徽章可证明您掌握技能的熟练程度,提升您的专业形象,最终助您获得更多职业机会。 欢迎访问您的个人资料,并跟踪您已获得的徽章。
完成开发 Google Cloud 网络课程,赢取技能徽章。在此课程中,您将学习 部署和监控应用的多种方法,包括执行以下任务的方法:探索 IAM 角色并添加/移除 项目访问权限、创建 VPC 网络、部署和监控 Compute Engine 虚拟机、 编写 SQL 查询、在 Compute Engine 中部署和监控虚拟机,以及使用 Kubernetes 通过多种部署方法部署应用。 技能徽章是 由 Google Cloud 颁发的专有数字徽章,旨在认可 您在 Google Cloud 产品与服务方面的熟练度;您需要在交互式实操环境中参加考核, 证明自己运用所学知识的能力后才能获得。完成此技能徽章课程和 作为最终评估的实验室挑战赛,即可获得技能徽章,并在您的社区圈中秀一秀 自己的水平。
完成在 Google Cloud 上实施云安全基础措施技能徽章中级课程, 展示自己在以下方面的技能:使用 Identity and Access Management (IAM) 创建和分配角色; 创建和管理服务账号;跨虚拟私有云 (VPC) 网络实现专用连接; 使用 Identity-Aware Proxy 限制应用访问权限; 使用 Cloud Key Management Service (KMS) 管理密钥和加密数据;创建专用 Kubernetes 集群。 技能徽章是由 Google Cloud 颁发的专有数字徽章,旨在认可 您在 Google Cloud 产品与服务方面的熟练度;您需要在 交互式实操环境中参加考核,证明自己运用所学知识的能力后才能获得。完成此技能 徽章课程和作为最终评估的实验室挑战赛,即可获得技能徽章, 并在您的社交圈中秀一秀自己的能力。
完成构建安全的 Google Cloud 网络课程,赢取技能徽章。在此课程中,您将了解与网络有关的众多 资源,以便在 Google Cloud 上构建、扩缩和保护自己的应用。 技能徽章是由 Google Cloud 颁发的专有数字徽章,旨在认可 您在 Google Cloud 产品与服务方面的熟练度;您需要在 交互式实操环境中参加考核,证明自己运用所学知识的能力后才能获得此徽章。完成此技能 徽章课程和作为最终评估的实验室挑战赛,即可获得技能徽章, 在您的人际圈中炫出自己的技能。
完成“在 Google Cloud 上设置应用开发环境”课程,赢取技能徽章;通过该课程,您将了解如何使用以下技术的基本功能来构建和连接以存储为中心的云基础设施: Cloud Storage、Identity and Access Management、Cloud Functions 和 Pub/Sub。 技能徽章是由 Google Cloud 颁发的专属数字徽章, 旨在认可您在 Google Cloud 产品与服务方面的熟练度;您需要在交互式实操环境中参加考核,证明自己运用所学知识的能力后才能获得。完成此技能徽章课程和作为最终评估的实验室挑战赛,获得技能徽章,在您的人际圈中炫出自己的技能。
完成入门级在 Compute Engine 上实现负载均衡技能徽章课程,展示自己在以下方面的技能: 编写 gcloud 命令和使用 Cloud Shell,在 Compute Engine 中创建和部署虚拟机, 以及配置网络和 HTTP 负载均衡器。 技能徽章是由 Google Cloud 颁发的专属数字徽章, 旨在认可您在 Google Cloud 产品与服务方面的熟练度; 该课程会检验您在交互式实操环境中运用所学知识的 能力。完成此技能徽章课程和作为最终评估的实验室挑战赛, 即可获得技能徽章,并在您的圈子中秀一秀。
完成中级技能徽章课程使用多模态 Gemini 和多模态 RAG 检查富文档,展示您在以下方面的技能: 将多模态与 Gemini 配合使用,从而使用多模态提示从文本数据和视觉数据中提取信息、生成视频说明、 检索视频中不包含的额外信息; 将多模态检索增强生成 (RAG) 与 Gemini 配合使用,以构建包含文本和图片的文档的元数据、获取所有相关文本块并输出引用。 技能徽章是由 Google Cloud 颁发的专属数字徽章,旨在认可 您在 Google Cloud 产品与服务方面的熟练度; 您需要在 交互式实操环境中参加考核,证明自己运用所学知识的能力后才能获得此徽章。完成此技能 徽章课程和作为最终评估的实验室挑战赛, 获得技能徽章, 在您的人际圈中炫出自己的技能。
本课程介绍了 AI 可解释性和透明度的相关概念,探讨了 AI 透明度对于开发者和工程师的重要性。同时探索了有助于在数据和 AI 模型中实现可解释性和透明度的实用方法及工具。
本课程介绍了 Responsible AI 的概念和 AI 原则,还介绍了在 AI/机器学习实践中识别公平性与偏见以及减少偏见的实用技巧,同时探索了使用 Google Cloud 产品和开源工具来实施 Responsible AI 最佳实践的实用方法和工具。
在本次课程中,探索 AI 赋能的搜索技术、工具和应用。学习利用向量嵌入的语义搜索、融合语义和关键字的混合搜索方法,以及检索增强生成 (RAG) 技术,以打造基于事实的 AI 智能体,尽可能减少 AI 幻觉。获取 Vertex AI Vector Search 实战经验,打造您自己的智能搜索引擎。
本课程教您如何使用深度学习来创建图片标注模型。您将了解图片标注模型的不同组成部分,例如编码器和解码器,以及如何训练和评估模型。学完本课程,您将能够自行创建图片标注模型并用来生成图片说明。
本课程向您介绍 Transformer 架构和 Bidirectional Encoder Representations from Transformers (BERT) 模型。您将了解 Transformer 架构的主要组成部分,例如自注意力机制,以及该架构如何用于构建 BERT 模型。您还将了解可以使用 BERT 的不同任务,例如文本分类、问答和自然语言推理。完成本课程估计需要大约 45 分钟。
完成 在 Vertex AI 中设计提示入门技能徽章课程,展示以下方面的技能: Vertex AI 中的提示工程、图片分析和多模态生成式技术。探索如何编写有效的提示,指导生成式 AI 输出, 以及将 Gemini 模型应用于真实的营销场景。 技能徽章 是由 Google Cloud 颁发的专属数字徽章,旨在认可 您在 Google Cloud 产品与服务方面的熟练度;您需要在 交互式实操环境中参加考核,证明自己运用所学知识的能力后才能获得。完成此技能 徽章课程和作为最终评估的实验室挑战赛,获得技能徽章, 并在您的社交圈中秀一秀自己的水平。
本课程致力于为您提供所需的知识和工具,让您能够了解 MLOps 团队在部署和管理生成式 AI 模型以及探索 Vertex AI 如何帮助 AI 团队简化 MLOps 流程时面临的独特挑战,并帮助您在生成式 AI 项目中取得成功。
本课程介绍 Vertex AI Studio,这是一种用于与生成式 AI 模型交互、围绕业务创意进行原型设计并在生产环境中落地的工具。通过沉浸式应用场景、富有吸引力的课程和实操实验,您将探索从提示到产品的整个生命周期,了解如何将 Vertex AI Studio 用于多模态 Gemini 应用、提示设计、提示工程和模型调优。本课程的目的在于帮助您利用 Vertex AI Studio,在自己的项目中充分发掘生成式 AI 的潜力。
本课程简要介绍了编码器-解码器架构,这是一种功能强大且常见的机器学习架构,适用于机器翻译、文本摘要和问答等 sequence-to-sequence 任务。您将了解编码器-解码器架构的主要组成部分,以及如何训练和部署这些模型。在相应的实验演示中,您将在 TensorFlow 中从头编写简单的编码器-解码器架构实现代码,以用于诗歌生成。
本课程将向您介绍注意力机制,这是一种强大的技术,可令神经网络专注于输入序列的特定部分。您将了解注意力的工作原理,以及如何使用它来提高各种机器学习任务的性能,包括机器翻译、文本摘要和问题解答。
本课程向您介绍扩散模型。这类机器学习模型最近在图像生成领域展现出了巨大潜力。扩散模型的灵感来源于物理学,特别是热力学。过去几年内,扩散模型成为热门研究主题并在整个行业开始流行。Google Cloud 上许多先进的图像生成模型和工具都是以扩散模型为基础构建的。本课程向您介绍扩散模型背后的理论,以及如何在 Vertex AI 上训练和部署此类模型。
随着企业对人工智能和机器学习的应用越来越广泛,以负责任的方式构建这些技术也变得更加重要。但对很多企业而言,真正践行 Responsible AI 并非易事。如果您有意了解如何在组织内践行 Responsible AI,本课程正适合您。 本课程将介绍 Google Cloud 目前如何践行 Responsible AI,以及从中总结的最佳实践和经验教训,便于您以此为框架构建自己的 Responsible AI 方法。
这是一节入门级微课程,旨在解释什么是负责任的 AI、它的重要性,以及 Google 如何在自己的产品中实现负责任的 AI。此外,本课程还介绍了 Google 的 7 个 AI 开发原则。
这是一节入门级微学习课程,探讨什么是大型语言模型 (LLM)、适合的应用场景以及如何使用提示调整来提升 LLM 性能,还介绍了可以帮助您开发自己的 Gen AI 应用的各种 Google 工具。
这是一节入门级微课程,旨在解释什么是生成式 AI、它的用途以及与传统机器学习方法的区别。该课程还介绍了可以帮助您开发自己的生成式 AI 应用的各种 Google 工具。