가입 로그인

Google Cloud 콘솔에서 기술 적용

Vinod Konkal

회원 가입일: 2024

실버 리그

22880포인트
Create Agents with Generative Playbooks Earned 2월 10, 2025 EST
Building a Virtual Agent with Dialogflow CX Earned 11월 21, 2024 EST
Agent Assist Voice and Integrations Earned 11월 20, 2024 EST
Agent Assist and its Gen AI Capabilities Earned 11월 19, 2024 EST
Advanced Conversation Design Earned 11월 18, 2024 EST
Conversational AI Voice and Chat Integrations Earned 11월 4, 2024 EST
Advanced Webhook Concepts Earned 11월 4, 2024 EST
Building Complex End to End Self-Service Experiences in Dialogflow CX Earned 10월 31, 2024 EDT
Transformer 모델 및 BERT 모델 Earned 10월 28, 2024 EDT
인코더-디코더 아키텍처 Earned 10월 28, 2024 EDT
어텐션 메커니즘 Earned 10월 26, 2024 EDT
이미지 생성 소개 Earned 10월 26, 2024 EDT
생성형 AI를 위한 머신러닝 작업(MLOps) Earned 10월 25, 2024 EDT
책임감 있는 AI: Google Cloud를 통한 AI 원칙 적용하기 Earned 10월 25, 2024 EDT
Vertex AI의 프롬프트 설계 Earned 10월 21, 2024 EDT
Incorporating Generative Features into Complex DFCX Agents Earned 10월 20, 2024 EDT
Webhook fundamentals Earned 10월 17, 2024 EDT
Conversational Insights Earned 10월 17, 2024 EDT
책임감 있는 AI 소개 Earned 7월 15, 2024 EDT
대규모 언어 모델 소개 Earned 7월 15, 2024 EDT
생성형 AI 소개 Earned 7월 15, 2024 EDT

This course will teach you how to build conversational experiences for Conversational Agents using Generative Playbooks. You'll start with an introduction to playbooks and learn how to set up your first one. You'll also learn about the importance of testing, as well as key production considerations like quota limits and integration. The course concludes with a case study that shows how to use playbooks for generative steering.

자세히 알아보기

Learn how to build a basic virtual agent for your contact center using Dialogflow CX.

자세히 알아보기

In this course you will learn how Contact Center AI Agent Assist can enhance the productivity of human agents while interacting with customers through the Voice channel, as well as the options available for integration with other platforms in the CCAI ecosystem.

자세히 알아보기

Unlock the power of generative AI to create intelligent, automated agents. After completing this course, you'll be equipped to develop a data store agent that can instantly answer complex questions by automatically extracting and synthesizing information from your websites, documents, or structured data. Say goodbye to static FAQs—your new agent will provide dynamic, accurate answers and even surface the original source URLs, all with a simple and rapid setup.

자세히 알아보기

In this course, you will learn the advanced conversational design principles for both the Voice and Caht channels to craft engaging and effective end-to-end experiences that emulate human-like interactions.

자세히 알아보기

Learn about building conversational AI voice and chat integrations, including how telephony systems can connect with Google to enable phone-based interactions within the Conversational AI ecosystem. Explore key topics such as the differences between chat and voice conversations, the writing process for creating conversation scripts, and the beginning of the interrogative series and closing sequence.

자세히 알아보기

This course explores advanced technical considerations to optimize Webhook connectivity for comprehensive, end-to-end, Virtual Agent self-service experiences.

자세히 알아보기

This course will equip you with the tools to develop complex conversational experiences in Dialogflow CX capable of identifying the user intent and routing it to the right self service flow.

자세히 알아보기

이 과정은 Transformer 아키텍처와 BERT(Bidirectional Encoder Representations from Transformers) 모델을 소개합니다. 셀프 어텐션 메커니즘 같은 Transformer 아키텍처의 주요 구성요소와 이 아키텍처가 BERT 모델 빌드에 사용되는 방식에 관해 알아봅니다. 또한 텍스트 분류, 질문 답변, 자연어 추론과 같이 BERT를 활용할 수 있는 다양한 작업에 대해서도 알아봅니다. 이 과정은 완료하는 데 대략 45분이 소요됩니다.

자세히 알아보기

이 과정은 기계 번역, 텍스트 요약, 질의 응답과 같은 시퀀스-투-시퀀스(Seq2Seq) 작업에 널리 사용되는 강력한 머신러닝 아키텍처인 인코더-디코더 아키텍처에 대한 개요를 제공합니다. 인코더-디코더 아키텍처의 기본 구성요소와 이러한 모델의 학습 및 서빙 방법에 대해 알아봅니다. 해당하는 실습 둘러보기에서는 TensorFlow에서 시를 짓는 인코더-디코더 아키텍처를 처음부터 간단하게 구현하는 코딩을 해봅니다.

자세히 알아보기

이 과정에서는 신경망이 입력 시퀀스의 특정 부분에 집중할 수 있도록 하는 강력한 기술인 주목 메커니즘을 소개합니다. 주목 메커니즘의 작동 방식과 이 메커니즘을 다양한 머신러닝 작업(기계 번역, 텍스트 요약, 질문 답변 등)의 성능을 개선하는 데 활용하는 방법을 알아봅니다.

자세히 알아보기

이 과정에서는 최근 이미지 생성 분야에서 가능성을 보여준 머신러닝 모델 제품군인 확산 모델을 소개합니다. 확산 모델은 열역학을 비롯한 물리학에서 착안했습니다. 지난 몇 년 동안 확산 모델은 연구계와 업계 모두에서 주목을 받았습니다. 확산 모델은 Google Cloud의 다양한 최신 이미지 생성 모델과 도구를 뒷받침합니다. 이 과정에서는 확산 모델의 이론과 Vertex AI에서 이 모델을 학습시키고 배포하는 방법을 소개합니다.

자세히 알아보기

이 과정에서는 생성형 AI 모델을 배포하고 관리할 때 MLOps팀이 직면하는 고유한 과제를 파악하는 데 필요한 지식과 도구를 제공하고 Vertex AI가 어떻게 AI팀이 MLOps 프로세스를 간소화하고 생성형 AI 프로젝트에서 성공을 거둘 수 있도록 지원하는지 살펴봅니다.

자세히 알아보기

기업에서 인공지능과 머신러닝의 사용이 계속 증가함에 따라 책임감 있는 빌드의 중요성도 커지고 있습니다. 대부분의 기업은 책임감 있는 AI를 실천하기가 말처럼 쉽지 않습니다. 조직에서 책임감 있는 AI를 운영하는 방법에 관심이 있다면 이 과정이 도움이 될 것입니다. 이 과정에서 책임감 있는 AI를 위해 현재 Google Cloud가 기울이고 있는 노력, 권장사항, Google Cloud가 얻은 교훈을 알아보면 책임감 있는 AI 접근 방식을 구축하기 위한 프레임워크를 수립할 수 있을 것입니다.

자세히 알아보기

초급 Vertex AI의 프롬프트 설계 기술 배지를 완료하여 Vertex AI 내 프롬프트 엔지니어링, 이미지 분석, 멀티모달 생성형 기술과 관련된 기술 역량을 입증하세요. 효과적인 프롬프트를 만들고 생성형 AI 출력을 안내하며 실제 마케팅 분야 시나리오에 Gemini 모델을 적용하는 방법을 알아보세요. 기술 배지는 Google Cloud 제품 및 서비스 숙련도에 따라 Google Cloud에서 독점적으로 발급하는 디지털 배지로, 기술 배지 과정을 통해 대화형 실습 환경에서 지식을 적용하는 역량을 테스트할 수 있습니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 기술 배지를 받을 수 있습니다.

자세히 알아보기

In this course you will learn how to integrate multiple advanced generative capabilities within a Dialogflow CX agent.

자세히 알아보기

In this course, you will learn the important role that different types of webhooks play in Dialogflow CX development, and how to effectively integrate them into your routine configuration of a Virtual Agent.

자세히 알아보기

In this course you will learn how to leverage Conversational Insights to uncover hidden information from your contact center data to increase operational efficiency and drive data-driven business decisions.

자세히 알아보기

책임감 있는 AI란 무엇이고 이것이 왜 중요하며 Google에서는 어떻게 제품에 책임감 있는 AI를 구현하고 있는지 설명하는 입문용 마이크로 학습 과정입니다. Google의 7가지 AI 원칙도 소개합니다.

자세히 알아보기

이 과정은 입문용 마이크로 학습 과정으로, 대규모 언어 모델(LLM)이란 무엇이고, LLM을 활용할 수 있는 사용 사례로는 어떤 것이 있으며, 프롬프트 조정을 사용해 LLM 성능을 개선하는 방법은 무엇인지 알아봅니다. 또한 자체 생성형 AI 앱을 개발하는 데 도움이 되는 Google 도구에 대해서도 다룹니다.

자세히 알아보기

생성형 AI란 무엇이고 어떻게 사용하며 전통적인 머신러닝 방법과는 어떻게 다른지 설명하는 입문용 마이크로 학습 과정입니다. 직접 생성형 AI 앱을 개발하는 데 도움이 되는 Google 도구에 대해서도 다룹니다.

자세히 알아보기