Azizbek Xasanov
Participante desde 2023
Liga Diamante
19370 pontos
Participante desde 2023
Muitas empresas tradicionais usam sistemas e aplicativos legados que não conseguem atender às expectativas dos clientes modernos. Com frequência, os líderes empresariais precisam escolher entre manter sistemas de TI antigos ou investir em novos produtos e serviços. O curso "Modernização de infraestrutura e aplicativos com o Google Cloud" aborda esses desafios e oferece soluções relacionadas à tecnologia de nuvem para cada um. Como parte do programa de aprendizado do Líder digital do Cloud, o objetivo deste curso é ajudar você a crescer profissionalmente e desenvolver o futuro do seu próprio negócio.
As tecnologias de nuvem podem agregar muito valor a uma organização e, ao combinar esse poder com dados, o potencial de crescer e criar novas experiências para os clientes é ainda maior. O curso "Como é feita a transformação de dados com o Google Cloud" mostra como os dados agregam valor às organizações e como o Google Cloud torna esses dados eficientes e acessíveis. Este curso, que faz parte do programa de aprendizado do Líder digital do Cloud, se destina às pessoas que querem crescer na profissão e construir o futuro da empresa.
As pessoas estão muito animadas com a tecnologia de nuvem e a transformação digital, mas também ainda têm muitas dúvidas. Exemplo: O que é a tecnologia de nuvem? O que significa transformação digital? Como a tecnologia de nuvem pode ajudar sua organização? Por onde começar? Se você já se questionou sobre isso, veio ao lugar certo. Este curso fornece uma visão geral dos tipos de oportunidades e desafios que as empresas encaram em suas jornadas de transformação digital. Se quiser saber mais sobre tecnologia de nuvem para se destacar no trabalho e ajudar a construir o futuro da sua empresa, este curso introdutório sobre transformação digital é para você. Este curso faz parte do programa de aprendizado do Líder digital do Cloud.
Este é um curso de microaprendizagem introdutório que busca explicar a IA responsável: o que é, qual é a importância dela e como ela é aplicada nos produtos do Google. Ele também contém os 7 princípios de IA do Google.
Este é um curso de microaprendizagem introdutório que busca explicar a IA generativa: o que é, como é usada e por que ela é diferente de métodos tradicionais de machine learning. O curso também aborda as ferramentas do Google que ajudam você a desenvolver apps de IA generativa.
Conclua o selo de habilidade intermediário Criar modelos de ML com o BigQuery ML para mostrar que você sabe: criar e avaliar modelos de machine learning usando o BigQuery ML para fazer previsões de dados. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Cloud e comprovam a habilidade de aplicar seu conhecimento em um ambiente prático e interativo. Conclua este curso e o laboratório com desafio da avaliação final para receber um selo de habilidade que pode ser compartilhado com seus contatos.
Conquiste o selo de habilidade intermediário ao concluir o curso Como criar e implantar soluções de machine learning na Vertex AI. Nele você aprenderá a usar a plataforma Vertex AI, o AutoML e os serviços de treinamento personalizados para treinar, avaliar, ajustar, explicar e implantar modelos de machine learning. Esse curso com selo de habilidade é destinado a cientistas de dados e engenheiros de machine learning. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Cloud e comprovam sua habilidade de aplicar seu conhecimento em um ambiente prático e interativo. Conclua o curso com selo de habilidade e o laboratório com desafio da avaliação final para receber um selo digital que pode ser compartilhado com sua rede.
Este é um curso de microlearning de nível introdutório que explica o que são modelos de linguagem grandes (LLM), os casos de uso em que podem ser aplicados e como é possível fazer o ajuste de comandos para aprimorar o desempenho dos LLMs. O curso também aborda as ferramentas do Google que ajudam a desenvolver seus próprios apps de IA generativa.
Conquiste o selo de habilidade introdutório Preparar dados para APIs de ML no Google Cloud para demonstrar que você é capaz de: limpar dados com o Dataprep by Trifacta, executar pipelines de dados no Dataflow, criar clusters e executar jobs do Apache Spark no Dataproc e chamar APIs de ML, incluindo as APIs Cloud Natural Language, Google Cloud Speech-to-Text e Video Intelligence. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Google Cloud e testam sua habilidade de aplicar esse conhecimento em um ambiente prático e interativo. Conclua este curso com selo de habilidade e o laboratório com desafio da avaliação final para receber um selo digital que pode ser compartilhado nas suas redes sociais e currículo.
Receba um selo de habilidade ao concluir os cursos "Introduction to Generative AI", "Introduction to Large Language Models" e "Introduction to Responsible AI". Consiga a aprovação nos testes finais dos cursos para demonstrar seu conhecimento sobre os conceitos básicos da IA generativa. Os selos de habilidades são digitais. Eles são emitidos pelo Google Cloud como forma de reconhecer sua capacidade de trabalhar com os produtos e serviços do Cloud. Torne seu perfil público e adicione os selos de habilidades às suas mídias sociais para mostrar seus conhecimentos.
Este curso é uma introdução ao mecanismo de atenção, uma técnica avançada que permite que as redes neurais se concentrem em partes específicas de uma sequência de entrada. Você vai entender como a atenção funciona e como ela pode ser usada para melhorar o desempenho de várias tarefas de machine learning (como tradução automática, resumo de texto e resposta a perguntas).
Neste curso, apresentamos os modelos de difusão, uma família de modelos de machine learning promissora no campo da geração de imagens. Os modelos de difusão são baseados na física, mais especificamente na termodinâmica. Nos últimos anos, eles se popularizaram no setor e nas pesquisas. Esses modelos servem de base para ferramentas e modelos avançados de geração de imagem no Google Cloud. Este curso é uma introdução à teoria dos modelos de difusão e como eles devem ser treinados e implantados na Vertex AI.
O curso apresenta os benefícios de usar a Vertex AI Feature Store e ensina a melhorar a acurácia dos modelos de ML e a identificar as colunas de dados que apresentam os atributos mais úteis. Ele também oferece conteúdo teórico e laboratórios sobre engenharia de atributos com BigQuery ML, Keras e TensorFlow.
Conclua o selo de habilidade introdutório Gerar insights a partir de dados do BigQuery para mostrar que você sabe gravar consultas SQL, consultar tabelas públicas e carregar dados de amostra no BigQuery, solucionar erros comuns de sintaxe com o validador de consultas no BigQuery e criar relatórios no Looker Studio fazendo a conexão com dados do BigQuery. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência nos produtos e serviços do Cloud, comprovando sua capacidade de aplicar esse conhecimento em um ambiente prático e interativo. Conclua este curso com selo de habilidade e o laboratório com desafio da avaliação final para receber um selo digital que pode ser compartilhado com seus contatos.
Ganhe o selo de habilidade avançado ao concluir o curso Usar APIs de machine learning no Google Cloud. Nele, você aprende os recursos básicos das seguintes tecnologias de machine learning e IA: API Cloud Vision, API Cloud Translation e API Cloud Natural Language. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência nos produtos e serviços do Cloud, comprovando sua capacidade de aplicar o conhecimento em um ambiente prático e interativo. Conclua este curso com selo de habilidade e o laboratório com desafio da avaliação final para receber um selo digital que pode ser compartilhado com seus contatos.
Quais são as práticas recomendadas para implementar machine learning no Google Cloud? O que é Vertex AI e como é possível usar a plataforma para criar, treinar e implantar modelos de machine learning do AutoML com rapidez e sem escrever nenhuma linha de código? O que é machine learning e que tipos de problema ele pode resolver? O Google pensa em machine learning de uma forma um pouco diferente. Para nós, o processo de ML é sobre fornecer uma plataforma unificada para conjuntos de dados gerenciados, como uma Feature Store, uma forma de criar, treinar e implantar modelos de machine learning sem escrever nenhuma linha de código. Além disso, o ML também é sobre a habilidade de rotular dados, criar notebooks do Workbench usando frameworks (como TensorFlow, SciKit Learn, Pytorch e R) e muito mais. A plataforma Vertex AI também inclui a possibilidade de treinar modelos personalizados, criar pipelines de componente e realizar previsões em lote e on-line. Também falamos sobre as cinco fas…
Este curso apresenta os produtos e serviços de Big Data e machine learning do Google Cloud que auxiliam no ciclo de vida de dados para IA. Ele explica os processos, os desafios e os benefícios de criar um pipeline de Big Data e modelos de machine learning com a Vertex AI no Google Cloud.