Join Sign in

Apply your skills in Google Cloud console

Danial Aqeem

Member since 2023

Diamond League

32655 points
Smart Analytics, Machine Learning, and AI on Google Cloud Earned May 14, 2024 EDT
[DEPRECATED] - Google Cloud Computing Foundations: Networking and Security in Google Cloud - Locales Earned May 14, 2024 EDT
Intro to ML: Image Processing Earned May 14, 2024 EDT
Gemini for Data Scientists and Analysts Earned May 14, 2024 EDT
Applying Machine Learning to your Data with Google Cloud Earned May 14, 2024 EDT
Mitigating Security Vulnerabilities on Google Cloud Earned May 13, 2024 EDT
Introduction to AI and Machine Learning on Google Cloud Earned May 13, 2024 EDT
Google Cloud'da Uygulama Geliştirme Ortamı Oluşturma Earned May 13, 2024 EDT
Temel: Altyapı Earned May 13, 2024 EDT
Develop Serverless Apps with Firebase Earned May 12, 2024 EDT
Integrating Applications with Gemini 1.0 Pro on Google Cloud Earned May 12, 2024 EDT
Analyze Images with the Cloud Vision API Earned May 7, 2024 EDT
Build Infrastructure with Terraform on Google Cloud Earned May 7, 2024 EDT
Analyze Sentiment with Natural Language API Earned May 7, 2024 EDT
Build LookML Objects in Looker Earned May 7, 2024 EDT
Perform Predictive Data Analysis in BigQuery Earned May 6, 2024 EDT
Monitor and Manage Google Cloud Resources Earned May 6, 2024 EDT
Google Cloud Big Data and Machine Learning Fundamentals Earned May 6, 2024 EDT
Analyze Speech and Language with Google APIs Earned May 5, 2024 EDT
Büyük Dil Modellerine Giriş Earned May 2, 2024 EDT
Deploy Kubernetes Applications on Google Cloud Earned Ağu 12, 2023 EDT
Google Cloud'da Uygulama Geliştirme Ortamı Oluşturma Earned Ağu 11, 2023 EDT
DEPRECATED BigQuery for Marketing Analysts Earned Ağu 11, 2023 EDT
Data Catalog Fundamentals Earned Ağu 11, 2023 EDT
Generative AI Explorer - Vertex AI Earned Ağu 11, 2023 EDT
NCAA® March Madness®: Bracketology with Google Cloud Earned Ağu 11, 2023 EDT
Build Infrastructure with Terraform on Google Cloud Earned Ağu 11, 2023 EDT
DEPRECATED Applying BigQuery ML's Classification, Regression, and Demand Forecasting for Retail Applications Earned Ağu 11, 2023 EDT
Create ML Models with BigQuery ML Earned Ağu 11, 2023 EDT
Develop Serverless Apps with Firebase Earned Ağu 10, 2023 EDT
DEPRECATED Google Cloud Solutions II: Data and Machine Learning Earned Ağu 10, 2023 EDT
Build Apps & Websites with Firebase Earned Ağu 10, 2023 EDT
Application Development with Cloud Run Earned Ağu 3, 2023 EDT
Google Developer Essentials Earned Tem 26, 2023 EDT
BigQuery Verilerinden Analiz Elde Etme Earned Tem 25, 2023 EDT
Compute Engine'de Yük Dengelemeyi Uygulama Earned Tem 25, 2023 EDT
Build a Website on Google Cloud Earned Tem 25, 2023 EDT

Incorporating machine learning into data pipelines increases the ability to extract insights from data. This course covers ways machine learning can be included in data pipelines on Google Cloud. For little to no customization, this course covers AutoML. For more tailored machine learning capabilities, this course introduces Notebooks and BigQuery machine learning (BigQuery ML). Also, this course covers how to productionalize machine learning solutions by using Vertex AI.

Learn more

Google Cloud Computing Foundations kursunda, bulut bilişimi alanında daha önce çalışmamış veya bu konuda hiç deneyimi olmayan bireylere; temel bulut kavramları, büyük veri ve makine öğrenimi gibi kavramlar ve Google Cloud’un bu kavramlarla hangi noktada, nasıl birlikte çalıştığı ayrıntılı bir genel bakışla anlatılır. Kursun sonunda öğrenciler bulut bilişimi, büyük veri ve makine öğrenimi konularında fikir yürütüp bazı becerileri pratik olarak sergileyebilecek seviyeye ulaşacaktır. Bu kurs, Google Cloud Computing Foundations adlı kurs serisinin bir parçasıdır. Kurslar aşağıdaki sırayla tamamlanmalıdır: Google Cloud Computing Foundations: Cloud Computing Fundamentals - Locales Google Cloud Computing Foundations: Infrastructure in Google Cloud - Locales Google Cloud Computing Foundations: Networking and Security in Google Cloud - Locales Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud - Locales Bu üçüncü kursta güvenli ağlar oluşturma,…

Learn more

Using large scale computing power to recognize patterns and "read" images is one of the foundational technologies in AI, from self-driving cars to facial recognition. The Google Cloud Platform provides world class speed and accuracy via systems that can utilized by simply calling APIs. With these and a host of other APIs, GCP has a tool for just about any machine learning job. In this introductory quest, you will get hands-on practice with machine learning as it applies to image processing by taking labs that will enable you to label images, detect faces and landmarks, as well as extract, analyze, and translate text from within images.

Learn more

In this course, you learn how Gemini, a generative AI-powered collaborator from Google Cloud, helps analyze customer data and predict product sales. You also learn how to identify, categorize, and develop new customers using customer data in BigQuery. Using hands-on labs, you experience how Gemini improves data analysis and machine learning workflows. Duet AI was renamed to Gemini, our next-generation model.

Learn more

In this course, we define what machine learning is and how it can benefit your business. You'll see a few demos of ML in action and learn key ML terms like instances, features, and labels. In the interactive labs, you will practice invoking the pretrained ML APIs available as well as build your own Machine Learning models using just SQL with BigQuery ML.

Learn more

In this self-paced training course, participants learn mitigations for attacks at many points in a Google Cloud-based infrastructure, including Distributed Denial-of-Service attacks, phishing attacks, and threats involving content classification and use. They also learn about the Security Command Center, cloud logging and audit logging, and using Forseti to view overall compliance with your organization's security policies.

Learn more

This course introduces the AI and machine learning (ML) offerings on Google Cloud that build both predictive and generative AI projects. It explores the technologies, products, and tools available throughout the data-to-AI life cycle, encompassing AI foundations, development, and solutions. It aims to help data scientists, AI developers, and ML engineers enhance their skills and knowledge through engaging learning experiences and practical hands-on exercises.

Learn more

Google Cloud'da Uygulama Geliştirme Ortamı Oluşturma kursunu tamamlayarak beceri rozeti kazanın. Bu kursta Cloud Storage, Identity and Access Management, Cloud Functions ve Pub/Sub gibi teknolojilerin temel özelliklerini kullanarak depolama odaklı bulut altyapısı oluşturma ve bu altyapıyla bağlantı kurmayı öğreneceksiniz.

Learn more

Bulut geliştirme konusunda yeniyseniz ve Google Cloud'un Temel Özellikleri kursunun da ötesinde uygulamalı alıştırma yapmak istiyorsanız bu kurs tam size göre. Cloud Storage'ın yanı sıra Monitoring ve Cloud Functions gibi diğer önemli uygulama hizmetlerini ayrıntılı bir şekilde inceleyen laboratuvarlarla uygulamalı deneyim kazanacaksınız. Her türlü Google Cloud girişiminde kullanabileceğiniz değerli beceriler geliştireceksiniz.

Learn more

Complete the intermediate Develop Serverless Apps with Firebase skill badge course to demonstrate skills in the following: architecting and building serverless web applications with Firebase, utilizing Firestore for database management, automating deployment processes using Cloud Build, and integrating Google Assistant functionality into your applications.

Learn more

This short course on integrating applications with Gemini 1.0 Pro models on Google Cloud helps you discover the Gemini API and its generative AI models. The course teaches you how to access the Gemini 1.0 Pro and Gemini 1.0 Pro Vision models from code. It lets you test the capabilities of the models with text, image, and video prompts from an app.

Learn more

Earn a skill badge by completing the Analyze Images with the Cloud Vision API quest, where you discover how to leverage the Cloud Vision API for various tasks, including extracting text from images.

Learn more

Complete the intermediate Build Infrastructure with Terraform on Google Cloud skill badge to demonstrate skills in the following: Infrastructure as Code (IaC) principles using Terraform, provisioning and managing Google Cloud resources with Terraform configurations, effective state management (local and remote), and modularizing Terraform code for reusability and organization.

Learn more

Earn a skill badge by completing the Analyze Sentiment with Natural Language API quest, where you learn how the API derives sentiment from text.

Learn more

Complete the introductory Build LookML Objects in Looker skill badge course to demonstrate skills in the following: building new dimensions and measures, views, and derived tables; setting measure filters and types based on requirements; updating dimensions and measures; building and refining Explores; joining views to existing Explores; and deciding which LookML objects to create based on business requirements.

Learn more

Complete the intermediate Perform Predictive Data Analysis in BigQuery skill badge course to demonstrate skills in the following: creating datasets in BigQuery by importing CSV and JSON files; harnessing the power of BigQuery with sophisticated SQL analytical concepts, including using BigQuery ML to train an expected goals model on soccer event data and evaluate the impressiveness of World Cup goals.

Learn more

Complete the introductory Monitor and Manage Google Cloud Resources skill badge to demonstrate skills in the following: granting and revoking IAM permissions; installing monitoring and logging agents; creating, deploying, and testing an event-driven Cloud Run function.

Learn more

This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.

Learn more

Earn a skill badge by completing the Analyze Speech and Language with Google APIs quest, where you learn how to use the Natural Language and Speech APIs in real-world settings.

Learn more

Bu giriş seviyesi mikro öğrenme kursunda büyük dil modelleri (BDM) nedir, hangi kullanım durumlarında kullanılabileceği ve büyük dil modelleri performansını artırmak için nasıl istem ayarlaması yapabileceğiniz keşfedilecektir. Ayrıca kendi üretken yapay zeka uygulamalarınızı geliştirmenize yardımcı olacak Google araçları hakkında bilgi verilecektir.

Learn more

Complete the intermediate Deploy Kubernetes Applications on Google Cloud skill badge course to demonstrate skills in the following: Configuring and building Docker container images.Creating and managing Google Kubernetes Engine (GKE) clusters.Utilizing kubectl for efficient cluster management.Deploying Kubernetes applications with robust continuous delivery (CD) practices.

Learn more

Google Cloud'da Uygulama Geliştirme Ortamı Oluşturma kursunu tamamlayarak beceri rozeti kazanın. Bu kursta Cloud Storage, Identity and Access Management, Cloud Functions ve Pub/Sub gibi teknolojilerin temel özelliklerini kullanarak depolama odaklı bulut altyapısı oluşturma ve bu altyapıyla bağlantı kurmayı öğreneceksiniz.

Learn more

Want to turn your marketing data into insights and build dashboards? Bring all of your data into one place for large-scale analysis and model building. Get repeatable, scalable, and valuable insights into your data by learning how to query it and using BigQuery. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.

Learn more

Data Catalog is deprecated and will be discontinued on January 30, 2026. You can still complete this course if you want to. For steps to transition your Data Catalog users, workloads, and content to Dataplex Catalog, see Transition from Data Catalog to Dataplex Catalog (https://cloud.google.com/dataplex/docs/transition-to-dataplex-catalog). Data Catalog is a fully managed and scalable metadata management service that empowers organizations to quickly discover, understand, and manage all of their data. In this quest you will start small by learning how to search and tag data assets and metadata with Data Catalog. After learning how to build your own tag templates that map to BigQuery table data, you will learn how to build MySQL, PostgreSQL, and SQLServer to Data Catalog Connectors.

Learn more

The Generative AI Explorer - Vertex Quest is a collection of labs on how to use Generative AI on Google Cloud. Through the labs, you will learn about how to use the models in the Vertex AI PaLM API family, including text-bison, chat-bison, and textembedding-gecko. You will also learn about prompt design, best practices, and how it can be used for ideation, text classification, text extraction, text summarization, and more. You will also learn how to tune a foundation model by training it via Vertex AI custom training and deploy it to a Vertex AI endpoint.

Learn more

In this series of labs you will learn how to use BigQuery to analyze NCAA basketball data with SQL. Build a Machine Learning Model to predict the outcomes of NCAA March Madness basketball tournament games.

Learn more

Complete the intermediate Build Infrastructure with Terraform on Google Cloud skill badge to demonstrate skills in the following: Infrastructure as Code (IaC) principles using Terraform, provisioning and managing Google Cloud resources with Terraform configurations, effective state management (local and remote), and modularizing Terraform code for reusability and organization.

Learn more

In this course you will learn how to use several BigQuery ML features to improve retail use cases. Predict the demand for bike rentals in NYC with demand forecasting, and see how to use BigQuery ML for a classification task that predicts the likelihood of a website visitor making a purchase.

Learn more

Complete the intermediate Create ML Models with BigQuery ML skill badge to demonstrate skills in creating and evaluating machine learning models with BigQuery ML to make data predictions.

Learn more

Complete the intermediate Develop Serverless Apps with Firebase skill badge course to demonstrate skills in the following: architecting and building serverless web applications with Firebase, utilizing Firestore for database management, automating deployment processes using Cloud Build, and integrating Google Assistant functionality into your applications.

Learn more

In this advanced-level quest, you will learn how to harness serious Google Cloud computing power to run big data and machine learning jobs. The hands-on labs will give you use cases, and you will be tasked with implementing big data and machine learning practices utilized by Google’s very own Solutions Architecture team. From running Big Query analytics on tens of thousands of basketball games, to training TensorFlow image classifiers, you will quickly see why Google Cloud is the go-to platform for running big data and machine learning jobs.

Learn more

Firebase is a backend-as-service (Bass) platform for creating mobile and web applications. In this quest you will learn to build serverless web apps, import data into a serverless database, and build a Google Assistant application with Firebase and its Google Cloud integrations. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google Cloud digital badge.

Learn more

This course introduces you to fundamentals, practices, capabilities and tools applicable to modern cloud-native application development using Google Cloud Run. Through a combination of lectures, hands-on labs, and supplemental materials, you will learn how to on Google Cloud using Cloud Run.design, implement, deploy, secure, manage, and scale applications

Learn more

This introductory-level quest shows application developers how the Google Cloud ecosystem could help them build secure, scalable, and intelligent cloud native applications. You learn how to develop and scale applications without setting up infrastructure, run data analytics, gain insights from data, and develop with pre-trained ML APIs to leverage machine learning even if you are not a Machine Learning expert. You will also experience seamless integration between various Google services and APIs to create intelligent apps.

Learn more

Giriş düzeyindeki BigQuery Verilerinden Analiz Elde Etme beceri rozetini alarak şu konulardaki becerilerinizi gösterin: SQL sorguları yazma, herkese açık tabloları sorgulama, örnek verileri BigQuery'ye yükleme, BigQuery'deki sorgu doğrulayıcı ile yaygın söz dizimi sorunlarını giderme ve BigQuery verilerine bağlanarak Looker Studio'da rapor oluşturma.

Learn more

Giriş düzeyindeki Compute Engine'de Yük Dengelemeyi Uygulama beceri rozetini tamamlayarak şu konulardaki becerilerinizi gösterin: gcloud komutları yazma ve Cloud Shell kullanma, Compute Engine'de sanal makineler oluşturma ve dağıtma, ağ ve HTTP yük dengeleyicileri yapılandırma. Beceri rozeti, Google Cloud ürün ve hizmetlerine ilişkin uzmanlık düzeyinizin tanınması amacıyla Google Cloud tarafından verilen özel bir rozettir. Bu rozet, bilginizi etkileşimli ve uygulamalı bir ortamda uygulama becerinizi test eder. Ağınızla paylaşabileceğiniz bir beceri rozeti kazanmak için bu beceri rozetini ve son değerlendirme niteliğindeki yarışma laboratuvarını tamamlayın.

Learn more

Bu görevde, web sitenizin kullanılabilir ve ölçeklenebilir olmasını sağlayacak dört Google Cloud web sitesi mimarisini öğreneceksiniz. Bu görevi, görev sonundaki yarışma laboratuvarı da dahil olmak üzere tamamladığınızda, size özel bir Google Cloud dijital rozetine hak kazanırsınız. Kendinizi sınayabileceğiniz bu laboratuvar, önceden belirlenmiş bazı adımları yerine getirmenizi ister, ancak çözümlerin asgari seviyede yönlendirmeyle oluşturulmasını zorunlu kılar ve Google Cloud teknolojisiyle ilişkili yeteneklerinizi teste tabi tutar. Bu görev, Get Cooking in Cloud video serisi temel alınarak hazırlanmıştır.

Learn more