参加 ログイン

Google Cloud コンソールでスキルを試す

Aqeem Danial

メンバー加入日: 2023

ダイヤモンド リーグ

32655 ポイント
Smart Analytics, Machine Learning, and AI on Google Cloud - 日本語版 Earned 5月 14, 2024 EDT
[DEPRECATED] - Google Cloud Computing Foundations: Networking and Security in Google Cloud 日本語版 Earned 5月 14, 2024 EDT
ML 入門: 画像処理 Earned 5月 14, 2024 EDT
データ サイエンティストとアナリスト向けの Gemini Earned 5月 14, 2024 EDT
Applying Machine Learning to Your Data with Google Cloud - 日本語版 Earned 5月 14, 2024 EDT
Mitigating Security Vulnerabilities on Google Cloud - 日本語版 Earned 5月 13, 2024 EDT
Google Cloud における AI と ML の概要 Earned 5月 13, 2024 EDT
Google Cloud におけるアプリ開発環境の設定 Earned 5月 13, 2024 EDT
ベースライン: インフラストラクチャ Earned 5月 13, 2024 EDT
Firebase を使用したサーバーレス アプリの開発 Earned 5月 12, 2024 EDT
Google Cloud 上の Gemini 1.0 Pro とアプリケーションの統合 Earned 5月 12, 2024 EDT
Analyze Images with the Cloud Vision API Earned 5月 7, 2024 EDT
Google Cloud における Terraform を使用したインフラストラクチャの構築 Earned 5月 7, 2024 EDT
Analyze Sentiment with Natural Language API Earned 5月 7, 2024 EDT
Build LookML Objects in Looker Earned 5月 7, 2024 EDT
Perform Predictive Data Analysis in BigQuery Earned 5月 6, 2024 EDT
Monitor and Manage Google Cloud Resources Earned 5月 6, 2024 EDT
Google Cloud Big Data and Machine Learning Fundamentals - 日本語版 Earned 5月 6, 2024 EDT
Analyze Speech and Language with Google APIs Earned 5月 5, 2024 EDT
BigQuery ML を使用した ML モデルの作成 Earned 5月 2, 2024 EDT
大規模言語モデルの概要 Earned 5月 2, 2024 EDT
Google Cloud での Kubernetes アプリケーションのデプロイ Earned 8月 12, 2023 EDT
Google Cloud におけるアプリ開発環境の設定 Earned 8月 11, 2023 EDT
BigQuery for Marketing Analysts Earned 8月 11, 2023 EDT
Data Catalog Fundamentals Earned 8月 11, 2023 EDT
Generative AI Explorer - Vertex AI Earned 8月 11, 2023 EDT
NCAA® March Madness®: Bracketology with Google Cloud Earned 8月 11, 2023 EDT
Google Cloud における Terraform を使用したインフラストラクチャの構築 Earned 8月 11, 2023 EDT
DEPRECATED Applying BigQuery ML's Classification, Regression, and Demand Forecasting for Retail Applications Earned 8月 11, 2023 EDT
BigQuery ML を使用した ML モデルの作成 Earned 8月 11, 2023 EDT
Firebase を使用したサーバーレス アプリの開発 Earned 8月 10, 2023 EDT
DEPRECATED Google Cloud Solutions II: Data and Machine Learning Earned 8月 10, 2023 EDT
Build Apps & Websites with Firebase Earned 8月 10, 2023 EDT
Application Development with Cloud Run Earned 8月 3, 2023 EDT
Google デベロッパー向け基礎 Earned 7月 26, 2023 EDT
BigQuery のデータから分析情報を引き出す Earned 7月 25, 2023 EDT
Compute Engine でのロード バランシングの実装 Earned 7月 25, 2023 EDT
Build a Website on Google Cloud Earned 7月 25, 2023 EDT

ML をデータ パイプラインに組み込むと、データから分析情報を抽出する能力を向上できます。このコースでは、Google Cloud でデータ パイプラインに ML を含める複数の方法について説明します。カスタマイズがほとんど、またはまったく必要ない場合のために、このコースでは AutoML について説明します。よりカスタマイズされた ML 機能については、Notebooks と BigQuery の機械学習(BigQuery ML)を紹介します。また、Vertex AI を使用して ML ソリューションを本番環境に導入する方法も説明します。

詳細

Google Cloud Computing Foundations コースでは、クラウド コンピューティングの 知識または経験がほとんどあるいはまったくない受講者に、クラウドの基礎、ビッグ データ、機械学習を網羅したコンセプトの概要と、Google Cloud がどこで、どのよう に役立つかについて詳しく説明します。 受講者はコースを修了するまでに、クラウド コンピューティング、ビッグデータ、 機械学習に関連するコンセプトを明確に説明したり、いくつかの実践的スキルを実証し たりできるようになっているはずです。 このコースは、Google Cloud Computing Foundations という一連のコースの一部です。 コースは次の順序で受講してください: Google Cloud Computing Foundations: Cloud Computing Fundamentals - Locales Google Cloud Computing Foundations: Infrastructure in Google Cloud - Locales Google Cloud Computing Foundations: Networking and Security in Google Cloud - Locales Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud - Locales この 3 番目のコースでは、安全なネットワークを構築する方法、 およびクラウドの自動化と管理ツールについて説明します。

詳細

大規模なコンピューティング能力を使用してパターンを認識し、 画像を「読み取る」ことは、自動運転車や顔認識に使用される AI の基盤技術の一つです 。 Google Cloud Platform は、 API を呼び出すだけで利用できるシステムを通じて、ワールドクラスの速度と精度を提供します。 こうした機能とさまざまな API を備えた GCP のツールを使えば、 ほぼあらゆる ML ジョブに対応できます。 この入門コースでは、 画像処理に用いられる ML の実践的な演習を行います。 ラボを活用して、画像にラベルを付けたり、顔やランドマークを検出したり、 画像内のテキストを抽出、分析、翻訳したりすることができます。

詳細

このコースでは、生成 AI を活用した Google Cloud のコラボレーターである Gemini が、顧客データの分析や商品売上の予測にどのように役立つかについて学びます。また、BigQuery で顧客データを使用して、新規顧客を特定、分類、発見する方法も学習します。ハンズオンラボでは、Gemini でデータ分析と ML のワークフローがどのように向上するかを体験します。 Duet AI は、次世代モデルである Gemini に名称変更されました。

詳細

このコースでは、ML について定義し、ビジネスで ML をどのように活用できるのかを学習します。機械学習を使用したデモをいくつか確認し、機械学習の主な用語(インスタンス、特徴、ラベルなど)について学習します。インタラクティブなラボでは、事前トレーニング済みの ML API の呼び出しを実行するほか、BigQuery ML で SQL のみを使用して独自の ML モデルを構築します。

詳細

この自習式トレーニング コースでは、参加者は、分散型サービス拒否攻撃、フィッシング攻撃、コンテンツの分類と使用に関わる脅威など、Google Cloud ベース インフラストラクチャのさまざまな箇所での攻撃を緩和する方法について学習します。さらに、Security Command Center、Cloud Logging と監査ロギングについて、および Forseti を使って組織のセキュリティ ポリシーへの全体的なコンプライアンスを確認する方法についても学習します。

詳細

このコースでは、予測 AI と生成 AI の両方のプロジェクトを構築できる、Google Cloud の AI および機械学習(ML)サービスについて紹介します。AI の基盤、開発、ソリューションを含むデータから AI へのライフサイクル全体で利用可能なテクノロジー、プロダクト、ツールについて説明するとともに、魅力的な学習体験と実践的なハンズオン演習を通じて、データ サイエンティスト、AI 開発者、ML エンジニアの方々がスキルや知識を強化できるようサポートすることを目指しています。

詳細

「Google Cloud におけるアプリ開発環境の設定」コースを完了すると、スキルバッジを獲得できます。このコースでは、 Cloud Storage、Identity and Access Management、Cloud Functions、Pub/Sub のテクノロジーの基本機能を使用して、ストレージ中心のクラウド インフラストラクチャを構築し接続する方法を学びます。

詳細

これは、Google Cloud Essentials よりもレベルの高い内容の練習機会を求めている初心者のクラウド デベロッパーに おすすめのコースです。Cloud Storage だけでなく、 Monitoring や Cloud Run functions などの主要なアプリケーション サービスに関連するラボを通して、 実践的な経験を積むことが可能です。また、 あらゆる Google Cloud イニシアチブに応用できる有益なスキルを身に付けることができます。

詳細

「Firebase を使用したサーバーレス アプリの開発」の中級スキルバッジを獲得すると、 Firebase を使用したサーバーレス ウェブ アプリケーションの設計とビルド、 データベース管理における Firestore の活用、Cloud Build を使用したデプロイ プロセスの自動化、 アプリケーションと Google アシスタント機能の統合といったスキルを実証できます。

詳細

Google Cloud 上の Gemini 1.0 Pro モデルとアプリケーションの統合に関する短いコースです。ここでは、Gemini API とその生成 AI モデルについて学習し、Gemini 1.0 Pro モデルと Gemini 1.0 Pro Vision モデルにコードからアクセスする方法を学びます。これらのモデルの機能は、アプリからのテキスト、画像、動画のプロンプトを使用してテストできます。

詳細

Earn a skill badge by completing the Analyze Images with the Cloud Vision API quest, where you discover how to leverage the Cloud Vision API for various tasks, including extracting text from images.

詳細

「Google Cloud における Terraform を使用したインフラストラクチャの構築」の中級スキルバッジを獲得すると、 Terraform を使用した Infrastructure as Code(IaC)の原則、Terraform 構成を使用した Google Cloud リソースのプロビジョニングと管理、 状態の効果的な管理(ローカルおよびリモート)、組織内での再利用性を念頭に置いた Terraform コードのモジュール化といったスキルを実証できます。

詳細

Earn a skill badge by completing the Analyze Sentiment with Natural Language API quest, where you learn how the API derives sentiment from text.

詳細

Complete the introductory Build LookML Objects in Looker skill badge course to demonstrate skills in the following: building new dimensions and measures, views, and derived tables; setting measure filters and types based on requirements; updating dimensions and measures; building and refining Explores; joining views to existing Explores; and deciding which LookML objects to create based on business requirements.

詳細

Earn the intermediate skill badge by completing the Perform Predictive Data Analysis in BigQuery course, where you will gain practical experience on the fundamentals of sports data science using BigQuery, including how to create a soccer dataset in BigQuery by importing CSV and JSON files; harness the power of BigQuery with sophisticated SQL analytical concepts, including using BigQuery ML to train an expected goals model on the soccer event data, and evaluate the impressiveness of World Cup goals.

詳細

This challenge lab tests your skills and knowledge from the labs in the Monitor and Manage Google Cloud Resources quest. You should be familiar with the content of labs before attempting this lab.

詳細

このコースでは、データから AI へのライフサイクルをサポートする Google Cloud のビッグデータと ML のプロダクトやサービスを紹介します。また、Google Cloud で Vertex AI を使用してビッグデータ パイプラインと ML モデルを作成する際のプロセス、課題、メリットについて説明します。

詳細

Earn a skill badge by completing the Analyze Speech and Language with Google APIs quest, where you learn how to use the Natural Language and Speech APIs in real-world settings.

詳細

「BigQuery ML を使用した ML モデルの作成」コースの中級スキルバッジを獲得できるアクティビティを修了すると、 BigQuery ML を使用して ML モデルを作成および評価し、データを予測するスキルを証明できます。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。このスキル バッジ コースと最終評価チャレンジラボを修了し、スキルバッジを獲得して ネットワークで共有しましょう。

詳細

このコースは、大規模言語モデル(LLM)とは何か、どのようなユースケースで活用できるのか、プロンプトのチューニングで LLM のパフォーマンスを高めるにはどうすればよいかについて学習する、入門レベルのマイクロ ラーニング コースです。独自の生成 AI アプリを開発する際に利用できる Google ツールも紹介します。

詳細

Google Cloud での Kubernetes アプリケーションのデプロイ コースの中級スキルバッジを獲得できるアクティビティを修了すると、 Docker コンテナ イメージの構成とビルド、Google Kubernetes Engine(GKE)クラスタの作成と管理、kubectl を活用した効率的な クラスタ管理、堅牢な継続的デリバリー(CD)による Kubernetes アプリケーションのデプロイ手法といったスキルを実証できます。

詳細

「Google Cloud におけるアプリ開発環境の設定」コースを完了すると、スキルバッジを獲得できます。このコースでは、 Cloud Storage、Identity and Access Management、Cloud Functions、Pub/Sub のテクノロジーの基本機能を使用して、ストレージ中心のクラウド インフラストラクチャを構築し接続する方法を学びます。

詳細

マーケティングデータを洞察し、ダッシュボード構築はいかがでしょう?大規模な分析とモデル構築のために、すべてのデータを1か所にまとめましょう。クエリ方法を学び、また BigQuery を使用しながら、再現性があり、拡張可能、そして価値ある洞察を データ化します。 BigQuery は、Google が完全管理しており、 NoOpsで、低コストの分析データベースです。 BigQuery を使用すれば、管理すべき インフラストラクチャを持たずに、またはデータベース管理者を必要とすることなく、何テラバイトものデータをクエリすることができます。 BigQuery は SQL を使用し、従量制モデルを利用できます。 BigQuery を使用すれば、データ分析に集中でき、意味ある洞察を見い出だすことができます。

詳細

Data Catalog is deprecated and will be discontinued on January 30, 2026. You can still complete this course if you want to. For steps to transition your Data Catalog users, workloads, and content to Dataplex Catalog, see Transition from Data Catalog to Dataplex Catalog (https://cloud.google.com/dataplex/docs/transition-to-dataplex-catalog). Data Catalog is a fully managed and scalable metadata management service that empowers organizations to quickly discover, understand, and manage all of their data. In this quest you will start small by learning how to search and tag data assets and metadata with Data Catalog. After learning how to build your own tag templates that map to BigQuery table data, you will learn how to build MySQL, PostgreSQL, and SQLServer to Data Catalog Connectors.

詳細

「Generative AI Explorer - Vertex AI」コースには、 Google Cloud での生成 AI の使用方法に関する複数のラボが含まれます。ラボでは、Vertex AI PaLM API ファミリーの text-bison、chat-bison、 textembedding-gecko などのモデルの使用方法を確認し、プロンプト設計やベスト プラクティス、さらに Vertex AI を活用した アイディエーション、テキスト分類、テキスト抽出、テキスト要約について 学びます。また、 Vertex AI カスタム トレーニングによって基盤モデルをチューニングし、Vertex AI エンドポイントにデプロイする方法も学びます。

詳細

In this series of labs you will learn how to use BigQuery to analyze NCAA basketball data with SQL. Build a Machine Learning Model to predict the outcomes of NCAA March Madness basketball tournament games.

詳細

「Google Cloud における Terraform を使用したインフラストラクチャの構築」の中級スキルバッジを獲得すると、 Terraform を使用した Infrastructure as Code(IaC)の原則、Terraform 構成を使用した Google Cloud リソースのプロビジョニングと管理、 状態の効果的な管理(ローカルおよびリモート)、組織内での再利用性を念頭に置いた Terraform コードのモジュール化といったスキルを実証できます。

詳細

In this course you will learn how to use several BigQuery ML features to improve retail use cases. Predict the demand for bike rentals in NYC with demand forecasting, and see how to use BigQuery ML for a classification task that predicts the likelihood of a website visitor making a purchase.

詳細

「BigQuery ML を使用した ML モデルの作成」コースの中級スキルバッジを獲得できるアクティビティを修了すると、 BigQuery ML を使用して ML モデルを作成および評価し、データを予測するスキルを証明できます。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。このスキル バッジ コースと最終評価チャレンジラボを修了し、スキルバッジを獲得して ネットワークで共有しましょう。

詳細

「Firebase を使用したサーバーレス アプリの開発」の中級スキルバッジを獲得すると、 Firebase を使用したサーバーレス ウェブ アプリケーションの設計とビルド、 データベース管理における Firestore の活用、Cloud Build を使用したデプロイ プロセスの自動化、 アプリケーションと Google アシスタント機能の統合といったスキルを実証できます。

詳細

In this advanced-level quest, you will learn how to harness serious Google Cloud computing power to run big data and machine learning jobs. The hands-on labs will give you use cases, and you will be tasked with implementing big data and machine learning practices utilized by Google’s very own Solutions Architecture team. From running Big Query analytics on tens of thousands of basketball games, to training TensorFlow image classifiers, you will quickly see why Google Cloud is the go-to platform for running big data and machine learning jobs.

詳細

Firebase is a backend-as-service (Bass) platform for creating mobile and web applications. In this quest you will learn to build serverless web apps, import data into a serverless database, and build a Google Assistant application with Firebase and its Google Cloud integrations. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google Cloud digital badge.

詳細

This course introduces you to fundamentals, practices, capabilities and tools applicable to modern cloud-native application development using Google Cloud Run. Through a combination of lectures, hands-on labs, and supplemental materials, you will learn how to on Google Cloud using Cloud Run.design, implement, deploy, secure, manage, and scale applications

詳細

この入門レベルのコースでは、アプリケーション開発者を対象に、Google Cloud のエコシステムを使用して安全、スケーラブル、インテリジェントなクラウドネイティブ アプリケーションを構築する方法を説明 します。インフラストラクチャの設定を行わずにアプリケーションの開発やスケーリングを行う方法、 データ分析を実施する方法、データから分析情報を得る方法、トレーニング済み ML の API を使って開発し、ML のエキスパートでなくても ML を活用する方法を学びます。 また、さまざまな Google サービスや API とのシームレスな統合を利用して、 インテリジェントなアプリを作成します。

詳細

「BigQuery のデータから分析情報を引き出す」の入門スキルバッジを獲得すると、 SQL クエリの作成、一般公開テーブルに対するクエリの実行、BigQuery へのサンプルデータの読み込み、BigQuery でのクエリ バリデータを使用した一般的な構文エラーのトラブルシューティング、 BigQuery データへの接続による Looker Studio でのレポート作成といったスキルを実証できます。

詳細

Compute Engine でのロード バランシングの実装 スキルバッジを獲得できる入門コースを修了すると、次のスキルを実証できます: gcloud コマンドの記述と Cloud Shell の使用、Compute Engine における仮想マシンの作成とデプロイ、 ネットワーク ロードバランサと HTTP ロードバランサの構成。 スキルバッジは、Google Cloud の プロダクトとサービスに関する習熟度を示す Google Cloud 発行の限定デジタルバッジです。 これは、インタラクティブなハンズオン環境での知識の応用力を 証明するものです。この入門コースと最終評価チャレンジラボを完了し、 スキルバッジを獲得しましょう。このスキルバッジはネットワークで共有できます。

詳細

このクエストでは、ウェブサイトの可用性とスケーラビリティを確保するために利用できる 4 つの Google Cloud ウェブサイト アーキテクチャについて学びます。最後のチャレンジラボも含め、このクエストを修了すると、Google Cloud の限定デジタルバッジを獲得できます。チャレンジラボには詳細な手順説明はありませんが、最小限のガイダンスを基にソリューションを構築することが求められ、Google Cloud テクノロジーのスキルがテストされます。このクエストは、Get Cooking in Cloud の動画シリーズの内容に基づいています。

詳細